TRAFFIC IMPACT STUDY

Covered Bridge Village

Town of East Greenbush, New York

CM Project No. 115-030

Prepared For:

Covered Bridge Partners, LLC

450 Loudon Road Loudonville, NY 12211

May 23, 2018

2 Winners Circle Albany, New York 12205 (518) 446-0396

Table of Contents

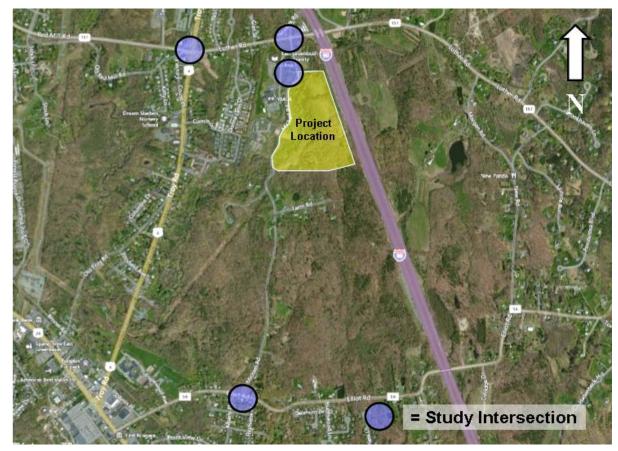
<u>Page</u>

Table of Con List of Tables List of Figure	tentsi si si dicesi	ii ii ii
CHAPTER I. A. B.	INTRODUCTION Planned Project Study Area and Methodology	1
CHAPTER II A. B. C. D. E.	EXISTING CONDITIONS	3 3 4 4
CHAPTER II A. B. C. D. E.	I. TRAFFIC FORECASTS	6 7 7 8
CHAPTER I\ A. B.	/. ANALYSIS	2
CHAPTER V	. CONCLUSIONS AND RECOMMENDATIONS	3

List of Tables

Table 3.1 – Trip Generation Summary	7
Table 4.1 – Peak Hour Level of Service Summary	. 12
Table 4.2 – Sensitivity Level of Service Summary	. 14

List of Figures


Figure 2.1 – 2015 Existing Traffic Volumes	5
Figure 3.1 – 2020 No-Build Traffic Volumes	9
Figure 3.2 – Trip Distribution and Trip Assignment	10
Figure 3.3 – 2020 Build Traffic Volumes	11
Figure 4.2 –2020 No-Build Traffic Volumes – Sensitivity Analysis	16
Figure 4.2 –2020 Build Traffic Volumes – Sensitivity Analysis	17

List of Appendices

Appendix A	Site Plan
Appendix B	Turning Movement Counts
Appendix C	Level of Service Analysis

CHAPTER I

This report summarizes the results of a Traffic Impact Study for the proposed *Covered Bridge Village* located in the southeast quadrant of the Luther Road (NY Route 151) and Michael Road intersection in the Town of East Greenbush, Rensselaer County, New York. The site is approximately 32.2 acres as shown in the aerial image below. A copy of the concept master plan dated is included in Appendix A.

A. Planned Project

The proposed project includes the construction of 288 apartment units. Access to the site will be provided by a full access driveway located on Michael Road, approximately 430 feet south of Community Way. It is expected that the project will be fully completed by 2020.

B. Study Area and Methodology

The study area for this analysis includes:

- Troy Road (US Route 4)/ Luther Road (NY Route 151)/ Red Mill Road (NY Route 151)
- 2. Luther Road (NY Route 151)/ Michael Road
- 3. Michael Road/ Community Way
- 4. Michael Rd/ Elliot Road

The potential traffic impact of the proposed project was determined by documenting the existing traffic conditions in the area, projecting future traffic volumes, including adding traffic associated with other developments in the area, adding the peak hour trip generation of the site, and determining the operating conditions of the study area intersections after development of the proposed project.

CHAPTER II EXISTING CONDITIONS

A. Roadways Serving the Site

 <u>Michael Road</u> – Michael Road is a two-lane road that provides north-south travel between Luther Road and Elliot Road. Adjacent to the project site, Michael Road provides a single lane in each direction with lane widths varying between 10-12 feet wide and no pedestrian accommodations. The posted speed limit along Michael Road is 30 miles per hour (mph). Land uses along Michael Road include residential and unoccupied parcels.

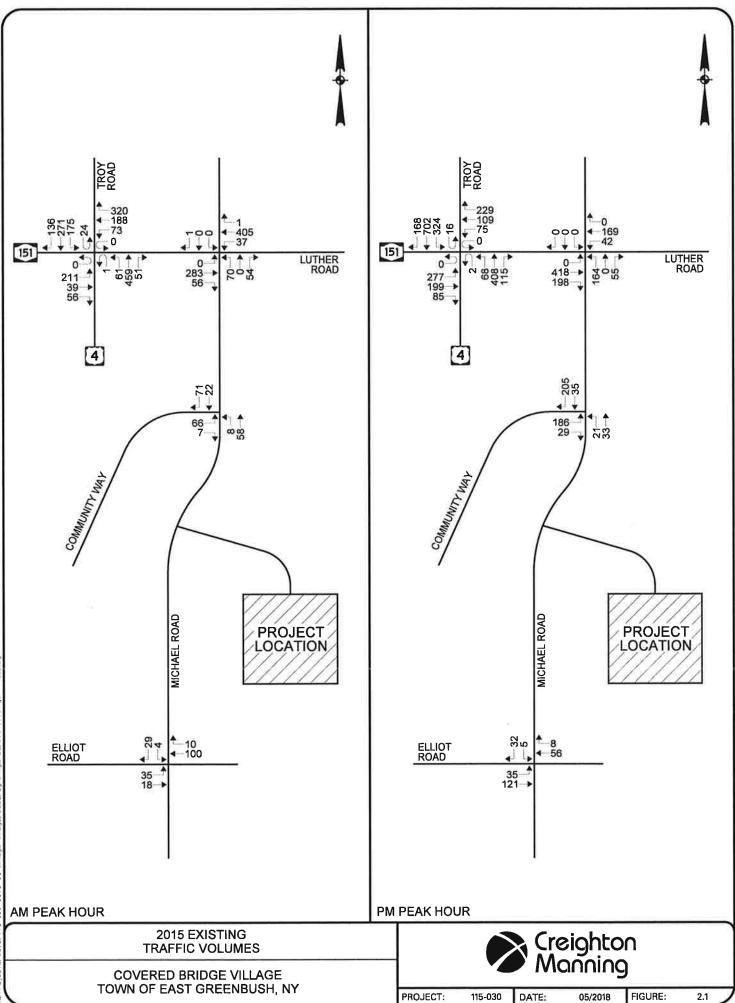
B. Study Area Intersections

- <u>Troy Road (US Route 4)/ Luther Road (NY Route 151)/ Red Miller Road (NY Route 151)</u> This is a four-leg roundabout with two lanes on each approach. There are marked crosswalks and pedestrian refuges on each approach. Sidewalks are present on all approaches but do not extend beyond the roundabout, except to the east along Luther Road towards Columbia High School.
- <u>Luther Road (NY Route 151)/ Michael Road</u> This is four leg intersection controlled by an actuated, uncoordinated traffic signal. The eastbound, westbound, and southbound approaches have a single lane for shared movements. The northbound lane has a shared left/through and an exclusive right turn lane with approximately 115 feet of storage. There are crosswalks and pedestrian signals on all four approaches. A sidewalk extends from Luther Road to Community Way on the west side of Michael Road, and east and west along Luther Road (north side).
- <u>Michael Road/ Community Way</u> This is a three leg unsignalized intersection with Community Way under a stop control condition and Michael Road in a free flow condition. Each approach has a single entering lane for shared movements. There are no marked crosswalks at the intersection. Sidewalks are present on the north side of Community Way and west side of Michael Road north of the intersection.
- <u>Michael Road/ Elliot Road</u> This is a three leg unsignalized intersection with Michael Road under a stop control condition and Elliot Road in a free flow condition. Each approach has a single entering lane for shared movements. There are no sidewalks, marked crosswalks, or pedestrian signals provided at the intersection.

C. Existing Conditions

Intersection turning movement counts were conducted at Troy Road/Luther Road/ Red Mill Road intersection on March 10th, 2015. The remaining three intersections were counted on February 24th to February 26th, 2015. The counts were conducted between 6:30 to 8:30 a.m. and 3:00 to 6:00 p.m. to coincide with the arrival and dismissal of the nearby Columbia High School. Peak one hour traffic volumes were obtained from the traffic counts and traffic volumes were balanced along Michael Road between Luther Road and Community Way. These volumes represent the 2015 existing condition traffic volumes for the weekday AM and PM peak hours as shown on Figure 2.1 and form the basis for all traffic forecasts. The raw turning movement count data is included in Appendix B.

The following observations are evident based on the existing traffic volume data:


- The weekday morning and evening peak hours varied from intersection to intersection.
- The two-way traffic volume measured on Michael Road approximately 500 feet south of Community Way is approximately 75 vehicles during the AM peak hour and 105 vehicles during the PM peak hour. The two-way traffic volume on Community Way is approximately 235 vehicles during the AM peak hour and 535 vehicles during the PM peak hour.

D. Transit

A review of Capital District Transportation Authority (CDTA) transit service indicates there are no available bus routes within the project vicinity.

E. Pedestrian/Bicycle Accommodations and Environment

A review of pedestrian accommodations including sidewalks, marked crosswalks and pedestrian push buttons with indicators was included in the description of the project area intersections. Bicyclists are accommodated via the shoulders within the study area. It is noted that Luther Road (NY Route 151) is also designated as New York State Bicycle Route 5.

r a ects#2015#115-030 Covered 3ridon Vilgoorgeondroond or a 15-030_fig.

•

CHAPTER III TRAFFIC FORECASTS

To evaluate the impact of the proposed project, traffic projections were prepared for 2020, the expected year of site development and operation.

A. 2020 No-Build Traffic Volumes

No-Build traffic volumes include a background growth rate as well as trips associated with other development projects in the study area. Historical traffic volume data published by the New York State Department of Transportation (NYSDOT) indicates that traffic volume in the study area is generally increasing by approximately 0.5% to 1.0% per year. Thus, a growth rate of 1.0% per year was applied to the 2015 existing traffic volumes to provide a conservative approach and account for any additional future developments that may impact the 2020 background growth traffic volumes.

In addition to general background traffic growth, vehicle trips associated with other significant developments in the project area were considered. Traffic associated with the following other development projects were provided by the Town of East Greenbush and included in the future traffic volume projections:

- East Greenbush Tech Park (completion of Phase 1) 100,000 SF of research and development space and office space on Tech Valley Drive
- Deer Pond Estates 60-unit Single Family Residential subdivision on Elliot Road
- Regeneron 187,000 SF of warehouse space located on Temple Lane
- Amedore Senior Housing 96 Senior Housing units located on Luther Road opposite Michael Drive
- Hampton Inn & Suites Glaz Street (open but completed after the traffic counts were collected)
- Hotel 76 Room Hotel located behind Cracker Barrel on US Rt. 4
- *Rysedorph Subdivision* 27-lot subdivision located on Olcott lane.

The background growth traffic volumes were added to the other developments resulting in the 2020 No-Build traffic volumes, illustrated on Figure 3.1. These volumes represent future traffic conditions in the study area *without* construction of the proposed project. The potential full build out of East Greenbush Tech Park (Phase 2) and Regeneron is include in Chapter IV.B - Sensitivity Analysis.

B. Trip Generation

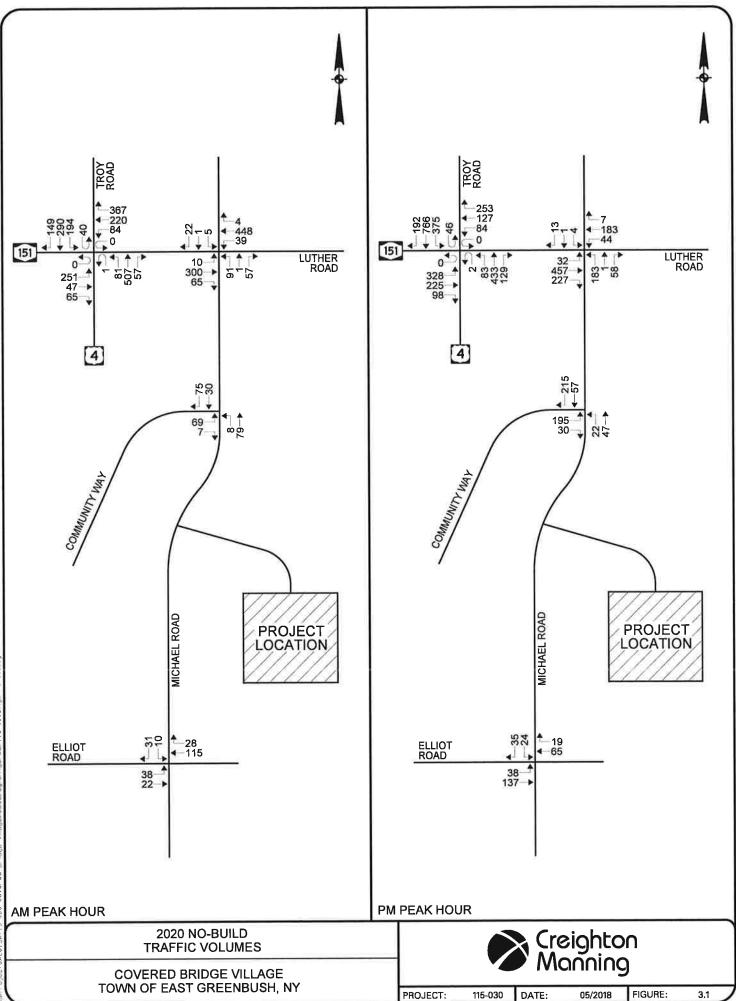
Trip generation determines the quantity of traffic expected to travel to/from the project site. The Institute of Transportation Engineers (ITE) *Trip Generation*, 10th edition, provides trip generation data for various land uses based on studies of similar existing developments located across the country and is the industry standard for determining trip generation for proposed land uses. Land Use Code 220 – Multifamily Housing (low-rise) was used to estimate the amount of traffic generated by the *Cover Bridge Village* project. As such the sites trip generation estimate is summarized in Table 3.1.

 Table 3.1 – Trip Generation Summary

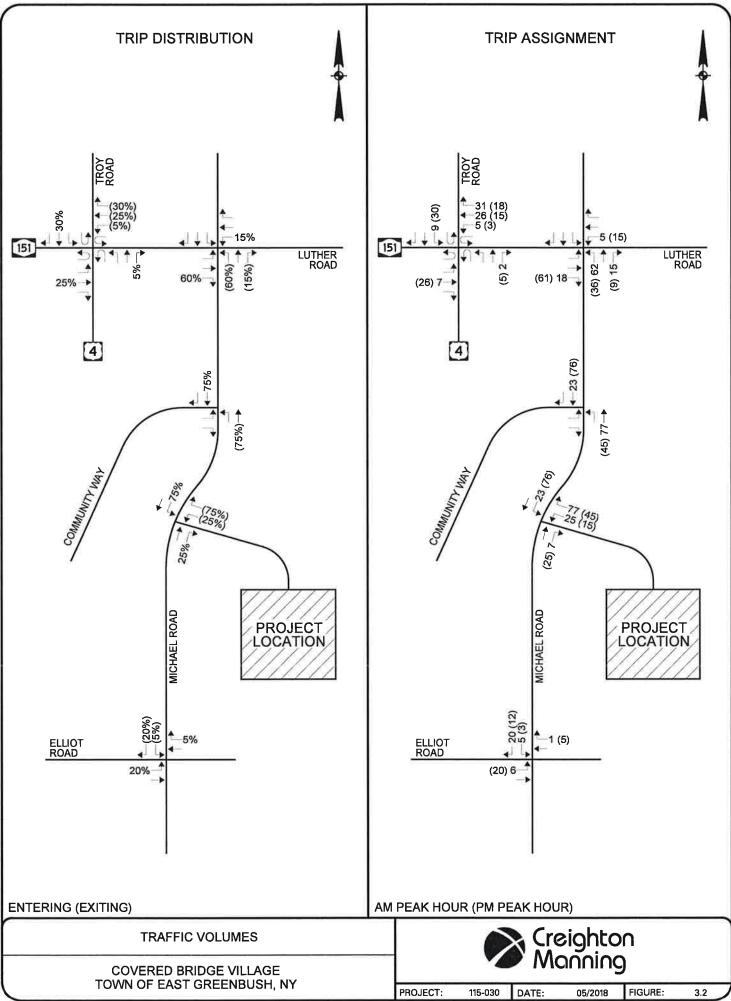
	Cine		AN	Peak Ho	our	PM Peak Hour			
Land Use	Size	LUC	Enter	Exit	Total	Enter	Exit	Total	
Multifamily Housing (low-rise)	288-Units	220	30	102	132	101	60	161	

Table 3.1 shows that the proposed *Covered Bridge Village* is expected to generate approximately 132 new vehicle trips during the AM peak hour and 161 new vehicle trips during the PM peak hour.

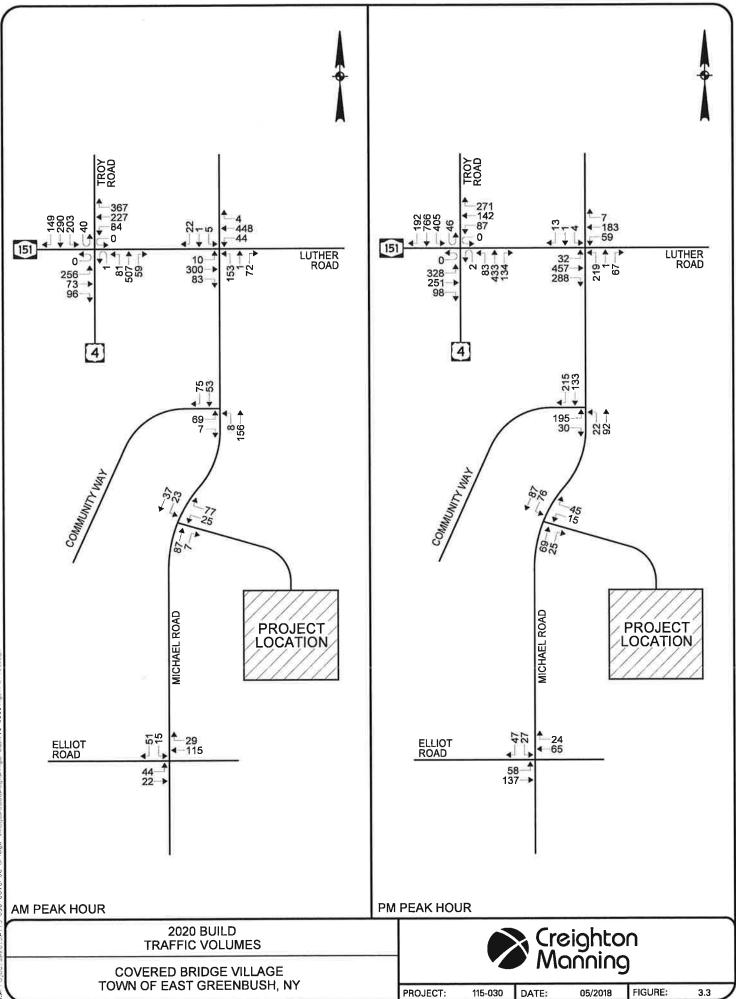
C. Trip Distribution


Trip distribution describes where traffic originates or where traffic is destined. Traffic generated by the proposed project was distributed based on existing and observed travel patterns in the project area and probable travel routes for residents of the proposed development. Based on the existing regional travel patterns, it is expected that approximately 25 percent of residents will travel to and from the south on Michael Road with the remaining 75 percent of site-generated traffic will travel to and from the north on Michael Road. Figure 3.2 illustrates the expected distribution of trips for the proposed project.

D. Trip Assignment


Trip assignment combines the results of the trip generation and trip distribution and determines the specific paths and roadways that will be used between various origin/destination pairs. Figure 3.2 shows the resulting trip assignment for the proposed project for the weekday AM and PM peak hours.

E. 2020 Build Traffic Volumes


The results of the site generated traffic assignment were added to the 2020 No-Build traffic volumes to develop the 2020 Build traffic volumes. The 2020 Build traffic volumes are shown on Figure 3.3 and represent future traffic volume conditions *after* the project is fully completed.

tsd20) = 15-030 fovered = 1000 for 115-030

rojectsø2015ø115-030 Covered Bridge Vijeceøcedeøcenerigeresø115-030_fig_traf_02.dgr

alertazo 5015-030 Covered Bridge Vilooontoodordonafiourean 15-030-fior

.

CHAPTER IV ANALYSIS

A. Capacity/Level of Service Analysis

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made using Synchro 10 software which automates the procedures contained in the *Highway Capacity Manual 6th Edition*. Evaluations were also completed using SIDRA software for the roundabout analysis. Levels of service range from A to F with LOS A conditions considered excellent with very little delay while LOS F generally represents conditions with very long delays. Further detailed information about levels of service criteria is included in Appendix C. Table 4.1 summarizes the results of the Level of Service calculations.

Intersection		_		AM Pea	k Hour			PM Pea	k Hour	
		Control	2015 Existing	2020 No-Build	2020 Build	2020 Build w/Imp	2015 Existing	2020 No-Build	2020 Build	2020 Build w/Imp
Red Mill Rd/ Luther Rd/ Rd (Rt 4)	Troy	RA								
Red Mill Rd EB	L TR LT		B (13.5) A (8.8) B (14.0)	B (13.4) A (8.5) B (16.6)	B (13.4) A (8.2) B (17.0)		C (20.9) B (13.5) B (11.8)	C (21.0) C (22.0) B (12.7)	C (31.5) B (17.1) B (13.0)	
Troy Rd NB	R L TR		B (11.8) B (15.3) A (9.5)	B (13.0) B (14.7) A (9.4)	B (13.2) B (14.9) A (9.8)		A (9.1) B (17.6) B (15.1)	A (9.6) B (16.7) B (16.5)	A (9.9) B (17.1) C (20.3)	
Troy Rd SB	L TR Dverall		B (14.4) A (7.7) B (11.1)	B (14.7) A (7.8) B (11.7)	B (14.7) A (7.9) B (11.8)		B (13.8) B (11.1) B (13.5)	B (13.9) B (12.6) B (15.2)	B (14.5) B (13.9) B (16.9)	
Luther Rd/ Michael Rd		S	В(11.1)	В(П.7)	Б (11.0)		Б (13.5)	D (15.2)	В (10.9)	
Luther Rd EB Luther Rd WB Michael Rd NB	LTR LTR LT R [L] [TR]	0	A (5.0) A (5.7) A (9.8) B (11.0) 	A (5.3) A (6.2) B (10.8) B (11.3) 	A (6.7) A (7.7) B (11.4) B (10.9) 	A (6.7) A (7.8) B (11.7) B (10.9)	A (6.7) A (4.4) B (11.0) B (10.4) 	A (7.4) A (4.4) B (12.9) B (11.9) 	C (26.2) B (12.3) D (43.2) B (15.9) 	B (17.5) A (8.9) B (18.6) B (15.2)
Michael Rd SB	LTR		A (9.2)	B (10.2)	B (10.0)	B (10.0)	A (9.6)	B (11.3)	B (18.6)	B (14.2)
Community Way/Michae	Overall el Rd	Т	A (6.1)	A (6.7)	A (8.1)	A (8.2)	A (7.1)	A (8.0)	C (25.8)	B (15.9)
Community Way EB Michael Rd NB	LR LT	W	A (9.7) A (7.4)	A (9.9) A (7.4)	B (10.8) A (7.5)		B (11.9) A (7.8)	B (12.7) A (7.9)	C (15.2) A (8.1)	
Elliot Rd/ Michael Rd		T W								
Elliot Rd EB Michael Rd SB	LT LR		A (7.6) A (9.3)	A (7.6) A (9.6)	A (7.7) A (9.8)		A (7.4) A (9.0)	A (7.4) A (9.8)	A (7.5) B (10.0)	

Table 4.1 – Peak Hour Level of Service Summary

Michael Rd/ Site Driveway	т W					
Site Driveway WB L	R	 	A (9.6)		 A (9.7)	
Michael Rd SB L	Т	 	A (7.5)		 A (7.7)	

Key: S, TW, RA = Signalized, Two-Way Stop, Roundabout

EB, WB, NB, SB = Eastbound, Westbound, Northbound, or Southbound intersection approaches

L, T, R = Left-turn, Through, and/or Right-turn intersection movements

X (Y.Y) = Level of service (Average Delay in seconds per vehicle)

-- = Not Applicable

The following observations are evident from the above analysis:

- <u>Red Mill Rd/Luther Rd/Troy Rd</u> The roundabout currently operates at LOS B during both peak hours with all approaches experiencing approximately 20 seconds of delay or less. The intersection is expected to operate similarly through Build conditions with an overall increase in delay less than two seconds.
- Luther Rd/Michael Rd This intersection currently operates at LOS A during both peak hours with all approaches experiencing approximately 11 seconds of delay or less. During the AM peak hour, this intersection will operate at LOS A through Build conditions with an average increase in delay of approximately two seconds. During the PM peak hour, the intersection will continue to operate at LOS A through No-Build conditions. Under Build conditions, the intersection is expected to operate at overall LOS C with an average increase in delay of approximately 17 seconds. Minor signal timing adjustments as well as changing the northbound Michael Road approach lane configuration to provide an exclusive left turn lane and a shared through/right turn lane was considered in the Build with improvement condition, resulting in an overall LOS B with no approach experiencing more than 19 seconds of delay.
- <u>Michael Rd/Community Way</u> The northbound Michael Road approach currently operates at LOS A during both peak hours and will operate similarly through Build conditions with an average increase in delay less than one second. The eastbound Community Way approach currently operates at LOS A during the AM peak hour and LOS B during the PM peak hour. Under Build conditions, this approach will operate at LOS B during the AM peak hour with an average increase in delay less than one second. During the PM peak hour, this approach will operate at LOS C with an average increase in delay less than three seconds. No mitigation is considered necessary.
- <u>Elliot Rd/Michael Rd</u> The eastbound Elliot Road approach currently operates at LOS A during both peak hours and is expected to operate similarly through Build conditions with an average increase in delay less than one second. The southbound Michael Road approach currently operates at LOS A during both peak hours. Under Build conditions, this intersection will continue to operate at LOS A during the AM peak hour and LOS B during the PM peak hour with an average increase in delay of one second or less. No mitigation is considered necessary.

 <u>Michael Rd/Site Driveway</u> – After completion of the project, the site driveway is expected to operate at LOS A during both peak hours with average delays of approximately nine seconds. The southbound Michael Road approach will operate at LOS A with approximately seven seconds of delay. This intersection will operate adequately under stop sign conditions on the site driveway and free flow movements on Michael Road.

B. Sensitivity Analysis

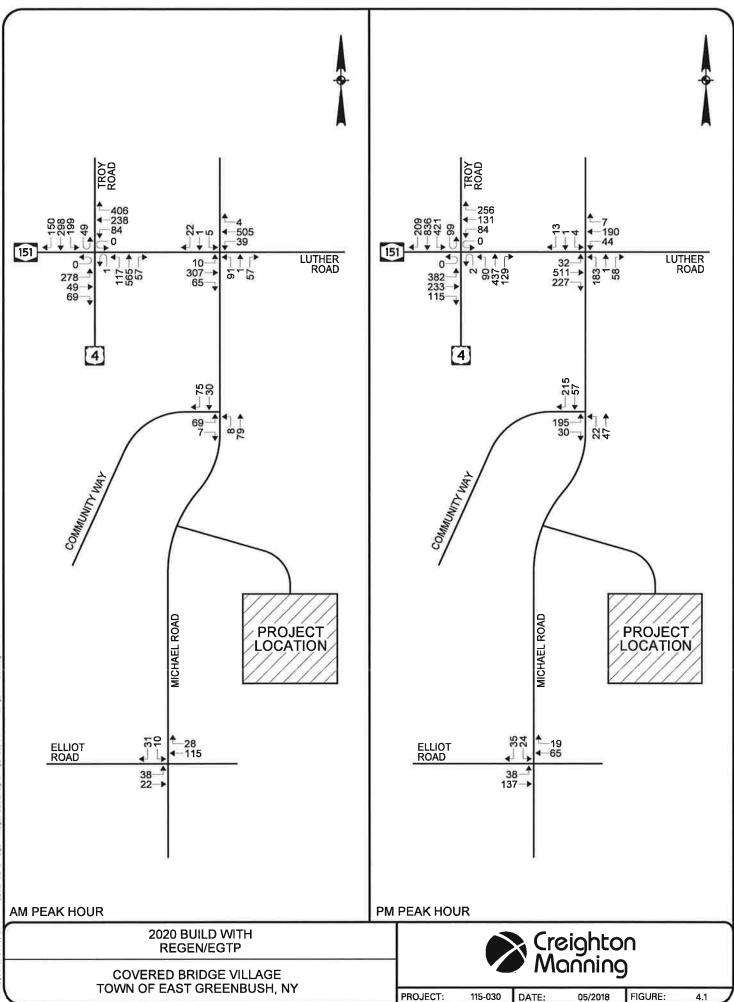
A sensitivity analysis was conducted to determine the traffic impacts associated with additional traffic generated by full build out of the East Greenbush Tech Park (EGTP) and Regeneron. In this scenario, traffic associated with Phase 2 of the East Greenbush Tech Park and Regeneron were added to the No-Build analysis, resulting in the 2020 Build with Regeneron/EG Tech Park and 2020 Build with Covered Bridge traffic volumes shown on Figure 4.1 and 4.2, respectively. It is noted that traffic from these projects is only expected to impact the Red Mill Road/Luther Road/Troy Road and Luther Road/Michael Road intersections. The resulting level of service and delays are described in Table 4.2 below.

Intersection		_		AM Pea	k Hour			PM Pea	k Hour	
		Control	2020 No-Build	Build w/ Regen/ EGTP	Build w/ Covered Bridge	Build w/Imp SA	2020 No-Build	Build w/ Regen/ EGTP	Build w/ Covered Bridge	Build w/Imp SA
Red Mill Rd/ Luther Ro	d/ Troy	RA								
Rd (Rt 4)										
Red Mill Rd EB	L		B (13.4)	B (14.0)	B (14.2)		C (21.0)	E (61.8)	F (94.6)	
	[L]TR		A (8.5)	B (10.3)	A (9.5)		C (22.0)	D (52.4)	F (85.5)	
Luther Rd WB	LT		B (16.6)	B (15.7)	B (16.7)		B (12.7)	B (13.0)	B (13.0)	
	R		B (13.0)	B (12.1)	B (12.8)		A (9.6)	A (9.7)	A (9.7)	
Troy Rd NB	L[T]		B (14.7)	A (10.0)	B (10.3)		B (16.7)	B (15.0)	B (15.2)	
	TR		A (9.4)	A (8.6)	A (9.0)		B (16.5)	B (14.0)	B (14.2)	
Troy Rd SB	L[T]		B (14.7)	B (12.2)	B (12.7)		B (13.9)	B (14.8)	B (16.4)	
	TR		A (7.8)	A (8.7)	A (8.8)		B (12.6)	A (10.3)	B (11.2)	
	Overall		B (11.7)	B (11.4)	B (11.8)		B (15.2)	C (22.3)	C (30.1)	
Luther Rd/ Michael Rd		S								
Luther Rd EB	LTR		A (5.3)	A (5.0)	A (6.3)	A (6.5)	A (7.4)	A (7.7)	C (28.4)	A (9.7)
Luther Rd WB	LTR		A (6.2)	A (6.4)	A (8.0)	A (8.2)	A (4.4)	A (4.3)	B (11.8)	A (5.1)
Michael Rd NB	LT		B (10.8)	B (11.8)	B (12.8)		B (12.9)	B (14.0)	E (66.6)	
	R		B (11.3)	B (12.4)	B (12.2)		B (11.9)	B (12.9)	B (18.2)	
	[L]					B (13.2)				B (17.2)
	[TR]					B (12.2)				B (14.7)
Michael Rd SB	LTR		B (10.2)	B (11.2)	B (11.3)	B (11.3)	B (11.3)	B (12.2)	C (20.8)	B (14.0)
	Overall		A (6.7)	A (6.8)	A (8.4)	A (8.6)	A (8.0)	A (8.3)	C (30.8)	B (10.3)

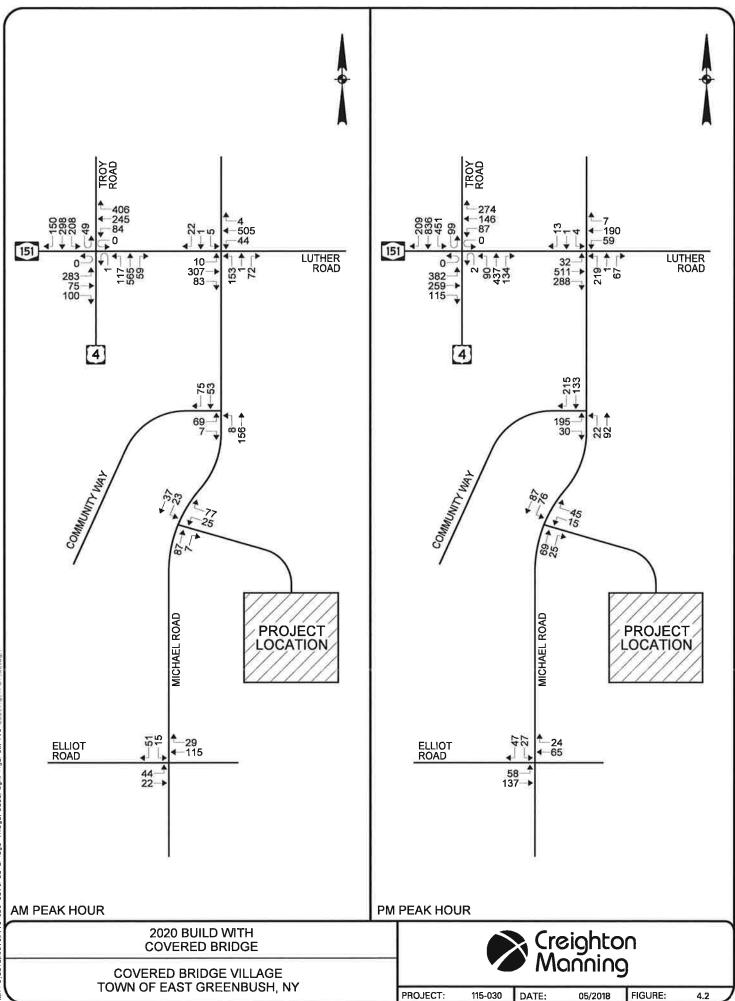
Table 4.2 – Sensitivity Level of Service Summary

Key: S, TW, RA = Signalized, Two-Way Stop, Roundabout

EB, WB, NB, SB = Eastbound, Westbound, Northbound, or Southbound intersection approaches


L, T, R = Left-turn, Through, and/or Right-turn intersection movements

X (Y.Y) = Level of service (Average Delay in seconds per vehicle)


-- = Not Applicable

The following summarizes the findings of the Sensitivity Analysis with and without full build out of the East Greenbush Tech Park and Regeneron:

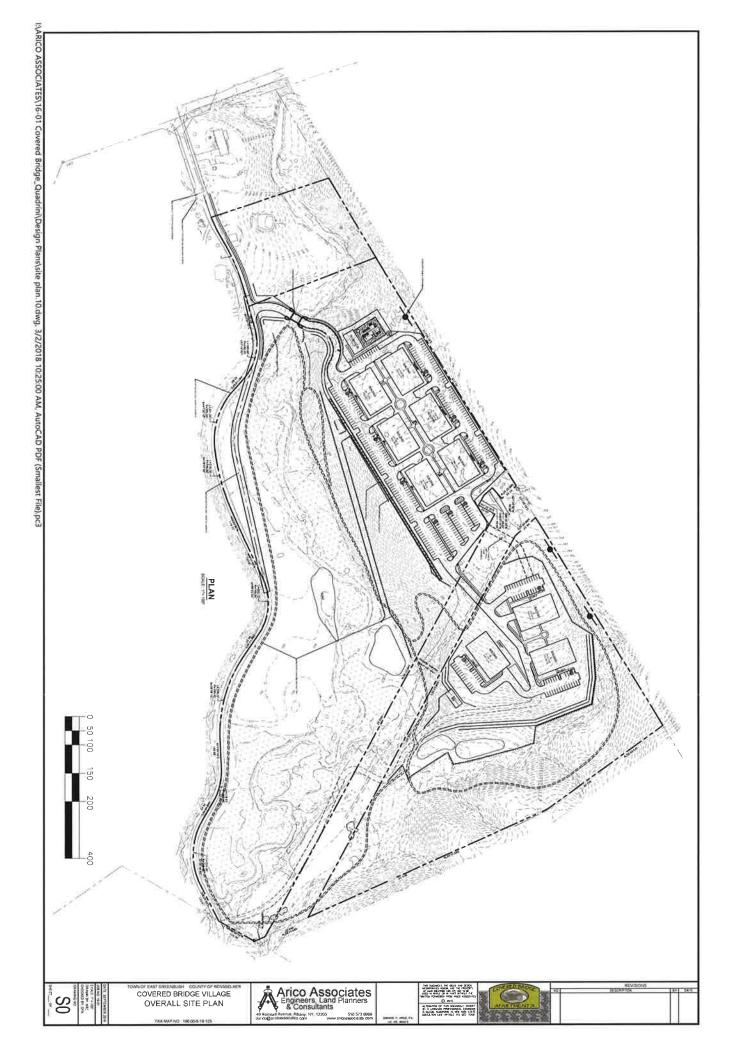
- <u>Red Mill Rd/Luther Rd/Troy Rd</u> The roundabout will operate at LOS B during the AM peak hour under No-Build conditions and will continue to operate similarly through Build conditions. During the PM peak hour, the roundabout will operate at LOS B under No-Build conditions and is expected to degrade to LOS C during the Build conditions with the addition of the full build out of Regeneron and EGTP. Degradations in the eastbound approach are expected and will continue through the Build conditions for the PM peak hour. These conditions include the expected improvements of modifying the roundabout to include two through lanes on the northbound and southbound Route 4 approaches, and modifying the eastbound approach to provide for an exclusive left and shared left/through/right lanes. Although delays are expected to increase on the eastbound approach, we expect these conditions to be limited to the peak afternoon period. Further, if drivers find the delay excessive, some shift in travel routes might occur, thereby self-regulating the condition.
- <u>Luther Rd/Michael Rd</u> This intersection will operate at LOS A during the AM peak hour through the Build conditions. During the PM peak hour, this intersection will operate at LOS B overall with Regeneron and EGTP if the improvements identified previously are completed (signal timing adjustments and lane configuration changes).

viøProjecrsø2015ø115-030 Covered Bridge Vingesteondsteondsteonstiovresø115-030 fig.tro

v;ØProjectsø2015ø115-030 Covered Bridge Village¢caddødgnøfiguresø115-030 fig.trof1

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS


A Traffic Impact Study was completed for the proposed *Covered Bridge Village* located in the southeast quadrant of the Luther Road (NY Route 151)/Michael Road intersection. The project is expected to be completed and occupied in 2020. Based on the traffic analysis contained herein, the following conclusions and recommendations are offered:

- 1) The development of the residential site is expected to generate 132 new vehicle trips during the AM peak hour, and 161 new vehicle trips during the PM peak hour.
- 2) The analysis indicates the following impacts, assuming that the *Covered Bridge Village* project is completed before the East Greenbush Tech Park and Regeneron are fully constructed:
 - a) <u>Red Mill Road/Luther Road/Troy Road (Rt 4)</u> This intersection will continue to operate at acceptable levels of service through the completion of the project. No improvements are suggested.
 - b) <u>Luther Road/Michael Road</u> During the AM peak hour, this intersection will continue to operate at acceptable levels of service through the completion. During the PM peak hour, the northbound and eastbound approaches will experience moderate increases in delay. Changes to the signal timings and northbound lane assignments are recommended.
 - c) <u>Community Way/Michael Road</u> This intersection will continue to operate at acceptable levels of service through the completion of the project. No improvements are suggested.
 - d) <u>Elliot Road/Michael Way</u> This intersection will continue to operate at acceptable levels of service through the completion of the project. No improvements are suggested.
- 3) The sensitivity analysis conducted for completion of the East Greenbush Tech Park and Regeneron indicates the following impacts:
 - a) <u>Red Mill Road/Luther Road/Troy Road</u> As expected, the eastbound approach will experience an increase in delay because of other developments, and to a lesser extent, the *Covered Bridge Village* project. The improvements originally proposed as part of Temple Farm project will help reduce the delay increases, but the eastbound approach is expected to operate at LOS D under No-Build conditions and LOS E under Build conditions. This condition will be limited to the PM peak hour and will be self-regulating, as drivers will use other routes if the delay is excessive.
 - b) <u>Luther Road (NY Route 151)/Michael Road</u> There is little or no change in operations during the AM peak hour. Delays experienced on the northbound and

eastbound approaches during the PM peak hour will be mitigated through signal timing changes and reassignment of the northbound lanes.

Attachment A Site Plan

Covered Bridge Village Town of East Greenbush, New York

Attachment B Turning Movement Counts

Covered Bridge Village Town of East Greenbush, New York

		Southbo Southb			Westbound St. Westbound				Northbound St. Northbound				Eastbound St. Eastbound			
Start Time	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Tum	Left	Thru	Right	U-Turn
6:30 AM	49	22	19	3	2	23	33	0	7	69	13	0	28	12	5	0
6:45 AM	108	32	26	0	13	26	43	0	7	55	27	0	57	43	8	0
7:00 AM	40	41	26	3	19	41	102	0	7	80	13	0	43	19	9	0
7:15 AM	43	70	23	8	16	41	70	0	17	115	8	0	39	7	15	0
7:30 AM	41	81	28	8	12	46	73	0	20	130	13	0	67	1	16	0
7:45 AM	41	66	53	5	12	52	60	0	16	119	13	1	56	12	10	0
8:00 AM	35	66	43	5	8	47	51	0	19	99	9	0	45	7	9	0
8:15 AM	57	69	43	6	11	36	58	0	26	86	11	2	43	10	6	0
3:00 PM	52	119	31	1	22	25	65	0	17	109	25	1	42	20	13	0
3:15 PM	51	140	29	2	22	25	55	0	14	94	32	1	31	25	16	0
3:30 PM	51	127	37	4	21	21	63	0	14	74	19	0	42	21	15	0
3:45 PM	80	144	31	1	10	12	46	0	9	77	21	2	49	37	6	0
4:00 PM	62	134	39	0	23	11	52	0	8	108	28	0	67	44	15	0
4:15 PM	79	182	33	5	15	19	38	0	10	97	26	0	46	33	25	0
4:30 PM	76	160	27	3	12	22	44	0	19	96	24	0	84	45	23	0
4:45 PM	95	205	41	7	15	28	49	0	16	108	33	0	68	51	24	0
5:00 PM	70	144	54	5	26	29	64	0	12	113	31	0	59	49	24	0
5:15 PM	83	185	43	1	21	29	70	0	21	89	26	2	63	53	13	0
5:30 PM	73	150	31	1	13	15	44	0	15	114	33	0	50	30	20	0
5:45 PM	74	157	50	0	21	19	40	0	15	97	15	0	42	36	14	0

		Southbo South			Westbound St. Westbound				Northbound St. Northbound				Eastbound St. Eastbound			
Start Time	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn
6:30 AM	3	0	0	0	0	1	0	0	0	4	1	0	0	0	0	(
6:45 AM	7	1	0	1	2	3	5	0	3	2	7	0	1	6	0	(
7:00 AM	0	1	1	0	8	4	8	0	1	4	0	0	0	0	0	(
7:15 AM	1	0	1	0	1	0	1	0	0	4	0	0	1	0	2	(
7:30 AM	3	7	1	0	1	2	0	0	0	0	1	0	1	0	3	(
7:45 AM	4	2	0	0	3	1	4	0	0	3	2	0	2	0	0	(
8:00 AM	3	2	2	0	1	1	0	0	2	3	2	0	0	0	1	(
8:15 AM	0	0	1	0	2	0	2	0	2	2	3	0	2	1	1	(
3:00 PM	1	0	0	0	1	1	3	0	1	0	0	0	0	0	0	(
3:15 PM	3	0	2	0	0	0	1	0	0	2	1	0	0	0	2	(
3:30 PM	0	2	1	0	0	1	1	0	0	1	1	0	1	0	1	(
3:45 PM	1	2	2	0	0	0	0	0	0	0	0	1	0	0	5	(
4:00 PM	1	1	0	0	1	0	1	0	3	1	1	0	1	2	2	(
4:15 PM	1	7	1	0	2	0	1	0	0	0	1	0	0	1	0	(
4:30 PM	0	2	0	0	1	0	0	0	0	0	0	0	1	0	0	(
4:45 PM	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	(
5:00 PM	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(

з_{г.}

		Southbo Southb			Westbound St. Westbound				Northbound St. Northbound				Eastbound St. Eastbound			
Start Time	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn
6:30 AM	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0
6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
7:00 AM	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	2	1	0	0	0	1	Ő
7:30 AM	0	1	1	0	0	1	2	0	0	1	0	0	1	0	0	0
7:45 AM	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0
8:15 AM	0	1	1	0	0	0	1	0	0	4	0	0	1	0	0	0
3:00 PM	0	1	1	0	0	0	0	0	0	2	0	0	1	0	0	0
3:15 PM	0	1	0	0	1	0	1	0	0	0	1	0	0	0	1	0
3:30 PM	0	2	1	0	0	0	0	0	0	1	0	0	1	0	0	0
3:45 PM	0	1	0	0	0	0	1	0	0	1	0	0	1	0	0	0
4:00 PM	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	2	1	0	3	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
4:45 PM	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
5:00 PM	0	3	2	0	0	0	0	0	0	1	0	0	1	0	0	0
5:15 PM	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0
5:30 PM	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
5:45 PM	Q	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0

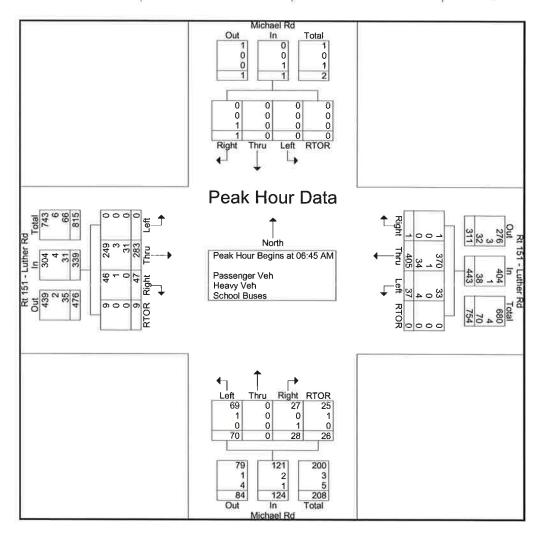
		Southbou Southbo		Westbo Westb		Northbo Northb		Eastbound St. Eastbound		
	Start Time	Peds CCW F	Peds CW	Peds CCW	Peds CW	Peds CCW	Peds CW	Peds CCW	Peds CW	
	6:30 AM	0	0	0	0	0	0	0	0	
(6:45 AM	0	0	0	0	0	0	0	0	
	7:00 AM	0	0	0	0	0	0	0	0	
-	7:15 AM	0	0	0	0	0	0	0	0	
-	7:30 AM	0	0	0	0	0	0	0	0	
-	7:45 AM	0	0	0	0	0	0	0	0	
ł	8:00 AM	0	0	0	0	0	0	0	0	
ł	8:15 AM	0	0	0	0	0	0	0	0	
;	3:00 PM	0	0	0	0	0	0	0	0	
;	3:15 PM	0	0	0	0	0	0	0	0	
55	3:30 PM	0	0	0	0	0	0	0	0	
;	3:45 PM	0	0	0	0	0	0	0	0	
4	4:00 PM	0	0	0	0	0	0	0	0	
4	4:15 PM	0	0	0	0	0	0	0	0	
4	4:30 PM	0	0	0	0	0	0	0	0	
4	4:45 PM	0	0	0	0	0	0	0	0	
ę	5:00 PM	0	0	0	0	0	0	0	0	
ł	5:15 PM	0	0	0	0	0	0	0	0	
ę	5:30 PM	0	0	0	0	0	0	0	0	
ę	5:45 PM	0	0	0	0	0	0	0	0	

		Southbo Southb				Westbo Westb				Northbo Northi				Eastbou Eastb		
Start Time	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn
6:30 AM	52	24	19	3	2	24	33	0	7	74	14	0	28	12	5	0
6:45 AM	115	33	26	1	15	29	48	0	10	57	34	0	58	50	8	0
7:00 AM	41	42	28	3	28	45	110	0	8	85	13	0	44	19	9	0
7:15 AM	44	70	24	8	17	41	71	0	17	121	9	0	40	7	18	0
7:30 AM	44	89	30	8	13	49	75	0	20	131	14	0	69	1	19	0
7:45 AM	46	70	54	5	15	53	64	0	16	122	15	1	58	12	10	0
8:00 AM	38	68	45	5	9	48	52	0	21	103	11	0	46	7	10	0
8:15 AM	57	70	45	6	13	36	61	0	28	92	14	2	46	11	7	0
3:00 PM	53	120	32	1	23	26	68	0	18	111	25	1	43	20	13	0
3:15 PM	54	141	31	2	23	25	57	0	14	96	34	1	31	25	19	0
3:30 PM	51	131	39	4	21	22	64	0	14	76	20	0	44	21	16	0
3:45 PM	81	147	33	1	10	12	47	0	9	78	21	3	50	37	11	0
4:00 PM	63	139	39	0	24	11	53	0	11	109	29	0	68	46	17	0
4:15 PM	80	189	34	5	17	19	39	0	10	99	28	0	49	34	25	0
4:30 PM	76	162	27	3	13	22	44	0	19	96	25	0	85	45	23	0
4:45 PM	95	207	42	7	15	29	49	0	16	109	33	0	68	51	24	0
5:00 PM	70	148	56	5	26	29	65	0	12	114	31	0	60	49	24	0
5:15 PM	83	185	43	1	21	29	71	0	21	89	26	2	64	54	14	0
5:30 PM	74	150	31	1	13	15	44	0	15	116	33	0	50	38	20	0
5:45 PM	74	157	50	0	21	19	40	0	15	97	15	0	43	37	15	0

Study Name TROY RD & LUTHER RD AND TROY RD & RED MILL RD start Date Tuesday, March 10, 2015 6:30 AM End Date Tuesday, March 10, 2015 6:00 PM Site Code

Report Summary

Crosswalk	destria Total	0	0%	0 0	0%	0 0	9%0	0	0%	0 0		0 0	6%	0	80	0 0	36	0	0%	0 0
	ide	SB		WB		NB		EB				SB		WB		BN		8		
	Total	1967	95%	78	4%	20	1%	2065	0.92			2754	%66	6	8	14	1%	1112	0.93	
	0	370 1	96%	11	3%	4	1%	385	0.78	19%	-	341	%66	1	16	m	1%	345	0.89	1794
	12	294	%96	6	3%	en	1%	306	0.86	15%		556	%66	٦,	80	4	1%	561	0.92	7000
pun	D	0	%	0	8	0	80	•	0		-	0	8	0	%0	0	%0	0	0	
Eastbound	œ	50	89%	ŝ	86	1	2%	56	0.74			84	%66	0	8	1	1%	85	0.89	
	T	39	100%	0	%0	0	8	39	0.51			198	%66	0	*6	H	1%	199	0.92	
	-	205	97%	4	2%	2	1%	211	0.76			274	%66	Ŧ	8	7	1%	277	0.81	
	0	368	92%	28	7%	ŝ	1%	401	0.83	19%		854	%66	ø	1%	4	%0	864	0.88	31%
	7	552	97%	15	%E	ŝ	1%	572	0.87	28%		590	%66	0	8	m	1%	593	0.94	2.1%
punoq	∍	۲,	100%	0	80	0	8	H	0.25			2	100%	0	8	0	%	2	0.25	
Northbound	æ	47	92%	m	6%	F	2%	51	0.85			114	%66	0	%	÷	1%	115	0.87	
	F	444	97%	11	2%	4	1%	459	0.88			406	100%	0	8	7	86	408	0.89	
	-	60	98%	4	2%	•	80	61	0.76			89	100%	0	ő	0	%0	68	0.81	
	0	251	95%	11	4%	m	1%	265	0.91	13%		636	100%	0	%0	2	80	638	0.89	23%
	-	544	94%	æ	6%	4	1%	581	0.79	28%		409	%66	7	8	7	ő	413	0.85	15%
Westbound	2	•	80	0	80	0	8	•	0			0	8	0	8	0	8	•	0	
West	ď	305	92%	13	4%	2	1%	320	0.73			227	%66	Ţ	8	-1	%0	229	0.81	
	F	180	%96	2	4%	-	1%	188	0.89			108	%66	0	*0	-	1%	109	0.94	
	-	65	81%	Ħ	18%	-	1%	73	0.65	_	_	74	%66	-	1%	•	80	2	0.72	
	٥	978	896%	28	3%	60	1%	1014	0.9	49%		923	%66	2	%0	ŝ	1%	930	0.95	33%
	-	577	95%	21	3%	00	1%	606	0.87	29%		1199	%66	9	8	S	8	1210	0.86	44%
Southbound	∍	24	100%	0	80	0	%0	24	3 0.75			16	100%	0	*0	0	8	1 16	5 0.57	
Sour	œ	130	896%	m	2%	ŝ	2%	136	5 0.63			165	382%	1	1%	2	1%	168	5 0.75	
	L	5 258	95%	10	4%	m	1%	5 271	5 0.76			4 694	%66 %	S	1%	m	86	t 702	5 0.85	
	-	165	94%	00	5%	2	1%	175	0.95	ور		324	100%	0	8	0	8	324	0.85	2
	Class.	Lights	*	Buses	%	Trucks	*	Total	PHF	Approach %		Lights	36	Buses	*	Trucks	*	Total	PHF	Approach %
	Time Period	Peak 1	Specified Period	6:30 AM - 8:30 AM	One Hour Peak	7:00 AM - 8:00 AM						Peak 2	Specified Period	3:00 PM - 6:00 PM	One Hour Peak	4:30 PM - 5:30 PM				


File Name : TM115030AM1 Site Code : 15-030-1 Start Date : 2/24/2015 Page No : 1

					Gr	oups	Printe	d-Pa	sseng	jer Veh	- Hea	avy Ve	eh - S	chool	Buses						
				ther R			Mi	chael	Rd			Rt 15'	l - Lut	her R				ichael			1
		Ea	astboi	und			No	rthbo	und			W	estbo	und			So	uthbo	und		
Start Time	Left	Thru	Right	RTOR	App Totel	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
06:30 AM	0	54	13	0	67	16	0	5	2	23	5	36	0	0	41	1	0	0	0	1	132
06:45 AM	0	130	18	1	149	11	0	10	13	34	5	76	1	0	82	0	0	0	0	0	265
Total	0	184	31	1	216	27	0	15	15	57	10	112	1	0	123	1	0	0	0	1	397
07:00 AM	0	87	13	1	101	17	0	16	2	35	13	145	0	0	158	0	0	0	0	0	294
07:15 AM	0	40	10	4	54	14	0	1	8	23	9	89	0	0	98	0	0	1	0	1	176
07:30 AM	0	26	6	3	35	28	0	1	3	32	10	95	0	0	105	0	0	0	0	0	172
07:45 AM	0	37	24	4	65	15	0	0	3	18	9	92	0	0	101	0	0	0	0	0	184
Total	0	190	53	12	255	74	0	18	16	108	41	421	0	0	462	0	0	1	0	1	826
08:00 AM	1	37	21	3	62	21	0	3	2	26	2	79	0	0	81	0	0	0	0	0	169
08:15 AM	0	28	32	2	62	19	0	0	2	21	12	75	0	0	87	0	0	0	0	0	170
Grand Total	1	439	137	18	595	141	0	36	35	212	65	687	1	0	753	1	0	1	0	2	1562
Apprch %	0.2	73.8	23	3		66.5	0	17	16.5		8.6	91.2	0.1	0		50	0	50	0		
Total %	0.1	28.1	8.8	1.2	38.1	9	0	2.3	2.2	13.6	4.2	44	0.1	0	48.2	0.1	0	0.1	0	0.1	
Passenger Veh	1	392	132	18	543	137	0	33	34	204	58	639	1	0	698	1	0	0	0	1	1446
% Passenger Veh	100	89.3	96.4	100	91.3	97.2	0	91.7	97.1	96.2	89.2	93	100	0	92.7	100	0	0	0	50	92.6
Heavy Veh	0	5	2	0	7	2	0	0	1	3	0	6	0	0	6	0	0	0	0	0	16
% Heavy Veh	0	1.1	1.5	0	1.2	1.4	0	0	2.9	1.4	0	0.9	0	0	0.8	0	0	0	0	0	1
School Buses	0	42	3	0	45	2	0	3	0	5	7	42	0	0	49	0	0	1	0	1	100
% School Buses	0	9.6	2,2	0	7.6	1.4	0	8.3	0	2.4	10.8	6.1	0	0	6.5	0	0	100	0	50	6.4

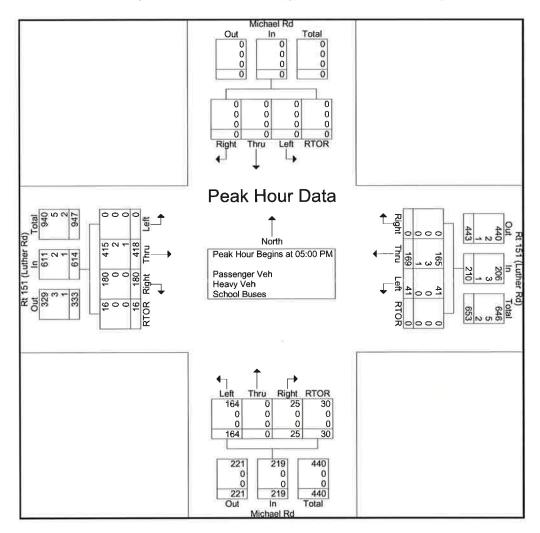
File Name : TM115030AM1 Site Code : 15-030-1 Start Date : 2/24/2015 Page No : 2

		Rt 15 [.]	1 - Lut	her R	d		Mi	ichael	Rd			Rt 15'	1 - Lut	her R	d		Mi	ichael	Rd		í.
		Ea	astbou	und			No	rthbo	und			W	estbo	und			So	uthbo	und		
Start Time	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Int. Total
Peak Hour /									of 1												
Peak Hour f	or Ent	ire Int	ersect	ion Be	gins at	6:45:0	0 AM														
6:45:00 AM	0	130	18	1	149	11	0	10	13	34	5	76	1	0	82	0	0	0	0	0	265
7:00:00 AM	0	87	13	1	101	17	0	16	2	35	13	145	0	0	158	0	0	0	0	0	294
7:15:00 AM	0	40	10	4	54	14	0	1	8	23	9	89	0	0	98	0	0	1	0	1	176
7:30:00 AM	0	26	6	3	35	28	0	1	3	32	10	95	0	0	105	0	0	0	0	0	172
Total Volume	0	283	47	9	339	70	0	28	26	124	37	405	1	0	443	0	0	1	0	1	907
% App. Total	0	83.5	13.9	2.7		56.5	0	22.6	21		8.4	91.4	0.2	0		0	0	100	0		
PHF	.000	.544	.653	.563	.569	.625	.000	.438	.500	.886	.712	.698	.250	.000	.701	.000	,000	.250	.000	.250	.771
Passenger Veh	0	249	46	9	304	69	0	27	25	121	33	370	1	0	404	0	0	0	0	0	829
% Passenger Veh	0	88.0	97.9	100	89.7	98.6	0	96.4	96.2	97.6	89.2	91.4	100	0	91.2	0	0	0	0	0	91.4
Heavy Veh	0	3	1	0	4	1	0	0	1	2	0	1	0	0	1	0	0	0	0	0	7
% Heavy Veh	0	1.1	2.1	0	1.2	1.4	0	0	3.8	1.6	0	0.2	0	0	0.2	0	0	0	0	0	0.8
School Buses	0	31	0	0	31	0	0	1	0	1	4	34	0	0	38	0	0	1	0	1	71
% School Buses	0	11.0	0	0	9.1	0	0	3.6	0	0.8	10.8	8.4	0	0	8.6	0	0	100	0	100	7.8

 File Name
 : TM115030PM1

 Site Code
 : 15-030-1

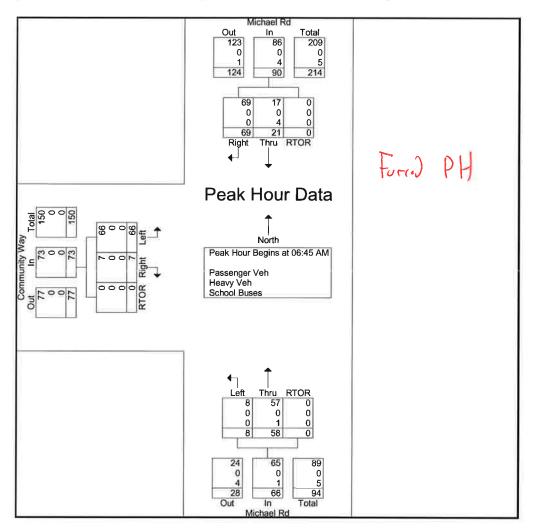
 Start Date
 : 2/26/2015


 Page No
 : 1

					Gr	oups	Printe	d-Pa	ssen	ger Vel	- Hea	avy V	eh - S	chool	Buses						
	1		1 (Luti		d)		M	ichael	Rd			Rt 15'	1 (Luti	her Re	d)		Mi	ichael	Rd		1
	_	Ea	astbo	und			No	rthbo	und			W	estbo	und			So	uthbo	und		
Start Time	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Tolal	Int. Total
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
04:00 PM	0	59	38	3	100	49	0	7	3	59	12	36	0	0	48	0	0	0	0	0	207
04:15 PM	0	76	46	4	126	29	0	0	6	35	5	27	0	0	32	0	0	0	0	0	193
04:30 PM	0	78	35	5	118	26	0	0	7	33	7	30	0	0	37	0	0	Ó	Ō	0	188
04:45 PM	0	77	52	11	140	28	0	5	5	38	10	33	0	0	43	0	0	0	0	Ō	221
Total	0	290	171	23	484	132	0	12	21	165	34	126	0	0	160	0	0	0	0	0	809
05:00 PM	0	97	41	3	141	58	0	4	6	68	5	32	0	0	37	0	0	0	0	0	246
05:15 PM	0	104	56	3	163	37	Ō	4	5	46	5	36	ō	ō	41	ŏ	õ	ŏ	ŏ	ŏ	250
05:30 PM	0	98	49	4	151	37	Õ	10	11	58	13	52	ŏ	õ	65	ŏ	õ	õ	ŏ	õ	274
05:45 PM	0	119	34	6	159	32	Ō	7	8	47	18	49	ŏ	õ	67	Ō	ŏ	Ő	õ	ŏ	273
Total	0	418	180	16	614	164	0	25	30	219	41	169	0	0	210	Ő	0	Ő	Ő	0	1043
Grand Total	0	708	351	39	1098	296	0	37	51	384	75	295	0	0	370	0	0	0	0	0	1852
Apprch %	0	64.5	32	3.6		77.1	0	9.6	13.3		20.3	79.7	0	0		Ō	Ō	Ō	Ō	-	
Total %	0	38.2	19	2.1	59.3	16	0	2	2.8	20.7	4	15.9	Ō	Ō	20	Ō	Ō	ō	Ō	0	1
Passenger Veh	0	704	346	39	1089	291	0	36	51	378	73	291	0	0	364	0	0	Ō	0	0	1831
% Passenger Veh	0	99.4	98.6	100	99.2	98.3	0	97.3	100	98.4	97.3	98.6	0	Ō	98.4	0	Ō	ō	0	Ő	98.9
Heavy Veh	0	3	0	0	3	1	0	0	0	1	1	3	0	0	4	0	0	0	0	0	8
% Heavy Veh	0	0.4	0	0	0.3	0.3	0	0	0	0.3	1.3	1	0	0	1.1	0	Ō	Ō	Ō	Ō	0.4
School Buses	0	1	5	0	6	4	0	1	0	5	1	1	0	0	2	0	0	0	0	0	13
% School Buses	0	0.1	1.4	0	0.5	1.4	0	2.7	0	1.3	1.3	0.3	Ō	0	0.5	Ō	0	0	0	0	0.7

File Name : TM115030PM1 Site Code : 15-030-1 Start Date : 2/26/2015 Page No : 2

		Rt 15'	l (Lutl	her Ro	d)		Mi	ichael	Rd			Rt 15 [.]	l (Luti	her Ro	d)		М	ichael	Rd	2	
		Ea	istbou	und			No	rthbo	und			W	estbo	und			So	uthbo	und		L
Start Time	Left			RTOR	App. Total	Left	Thru			App. Total	Left	Thru	Right	RTOR	App. Total	Left	Thru	Right	RTOR	App. Total	Inl. Total
Peak Hour A	Analys	is Fro	m 4:00):00 P	M to 5:4	45:00	PM - F	Peak 1	of 1												
Peak Hour f	or Ent	ire Inte	ersecti	ion Be	gins at	5:00:0	0 PM			10											
5:00:00 PM	0	97	41	3	141	58	0	4	6	68	5	32	0	0	37	0	0	0	0	0	246
5:15:00 PM	0	104	56	3	163	37	0	4	5	46	5	36	0	0	41	0	0	0	0	0	250
5:30:00 PM	0	98	49	4	151	37	0	10	11	58	13	52	0	0	65	0	0	0	0	0	274
5:45:00 PM	0	119	34	6	159	32	0	7	8	47	18	49	0	0	67	0	0	0	0	0	273
Total Volume	0	418	180	16	614	164	0	25	30	219	41	169	0	0	210	0	0	0	0	0	1043
% App. Total	0	68.1	29.3	2.6		74.9	0	11.4	13.7		19.5	80.5	0	0		0	0	0	0		
PHF	.000	.878	.804	.667	.942	.707	.000	.625	.682	.805	.569	.813	.000	.000	.784	.000	.000	.000	.000	.000	.952
Passenger Veh	0	415	180	16	611	164	0	25	30	219	41	165	0	0	206	0	0	0	0	0	1036
% Passenger Veh	0	99.3	100	100	99.5	100	0	100	100	100	100	97.6	0	0	98.1	0	0	0	0	0	99.3
Heavy Veh	0	2	0	0	2	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	5
% Heavy Veh	0	0.5	0	0	0.3	0	0	0	0	0	0	1.8	0	0	1.4	0	0	0	0	0	0.5
School Buses	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
% School Buses	0	0.2	0	0	0.2	0	0	0	0	0	0	0.6	0	0	0.5	0	0	0	0	0	0.2


File Name : TM115030AM2 Site Code : 15-030-2 Start Date : 2/24/2015 Page No : 1

		Commu	inity Wa	y		Mich	ael Rd			Mich	ael Rd		
		East	bound			North	bound			South	bound		
Start Time	Left	Right	RTOR	App. Total	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Tota
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:30 AM	13	0	0	13	1	10	0	11	1	17	0	18	42
06:45 AM	11	2	0	13	5	24	0	29	5	19	0	24	66
Total	24	2	0	26	6	34	0	40	6	36	0	42	108
07:00 AM	19	3	0	22	1	16	0	17	9	17	0	26	65
07:15 AM	17	1	0	18	0	7	0	7	5	18	0	23	48
07:30 AM	19	1	0	20	2	11	0	13	2	15	0	17	50
07:45 AM	11	1	0	12	4	8	0	12	1	36	0	37	61
Total	66	6	0	72	7	42	0	49	17	86	0	103	224
08:00 AM	16	0	0	16	5	10	0	15	2	27	0	29	60
08:15 AM	14	1	0	15	5	7	0	12	3	44	0	47	74
Grand Total	120	9	0	129	23	93	0	116	28	193	0	221	466
Apprch %	93	7	0		19.8	80.2	0		12.7	87.3	0		
Total %	25.8	1.9	0	27.7	4.9	20	0	24.9	6	41.4	0	47.4	
Passenger Veh	118	9	0	127	23	90	0	113	22	189	0	211	451
& Passenger Veh	98.3	100	0	98.4	100	96.8	0	97.4	78.6	97.9	Ō	95.5	96.8
Heavy Veh	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Veh	0	0	0	0	0	0	0	0	0	0	Ō	ō	Ő
School Buses	2	0	0	2	0	3	0	3	6	4	0	10	15
% School Buses	1.7	0	0	1.6	Ō	3.2	0	2.6	21.4	2.1	õ	4.5	3.2

File Name : TM115030AM2 Site Code : 15-030-2 Start Date : 2/24/2015 Page No : 2

		Commu		у			ael Rd				ael Rd		
		East	bound			North	bound			South	bound		
Start Time	Left	Right	RTOR	App. Total	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Total
Peak Hour Analysi	s From 6:	45:00 AN	1 to 7:30	:00 AM - Pe	eak 1 of 1								
Peak Hour for Enti	re Interse	ction Beg	ins at 6:	45:00 AM									
6:45:00 AM	11	2	0	13	5	24	0	29	5	19	0	24	66
7:00:00 AM	19	3	0	22	1	16	0	17	9	17	0	26	65
7:15:00 AM	17	1	0	18	0	7	0	7	5	18	0	23	48
7:30:00 AM	19	1	0	20	2	11	0	13	2	15	0	17	50
Total Volume	66	7	0	73	8	58	0	66	21	69	0	90	229
% App. Total	90.4	9.6	0		12.1	87.9	0		23.3	76.7	0		
PHF	.868	.583	.000	.830	.400	.604	.000	.569	.583	.908	.000	.865	.867
Passenger Veh	66	7	0	73	8	57	0	65	17	69	0	86	224
% Passenger Veh	100	100	0	100	100	98.3	0	98.5	81.0	100	0	95.6	97.8
Heavy Veh	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Veh	0	0	0	0	0	0	0	0	0	0	0	0	0
School Buses	0	0	0	0	0	1	0	1	4	0	0	4	5
% School Buses	0	0	0	0	0	1.7	0	1.5	19.0	0	0	4.4	2.2

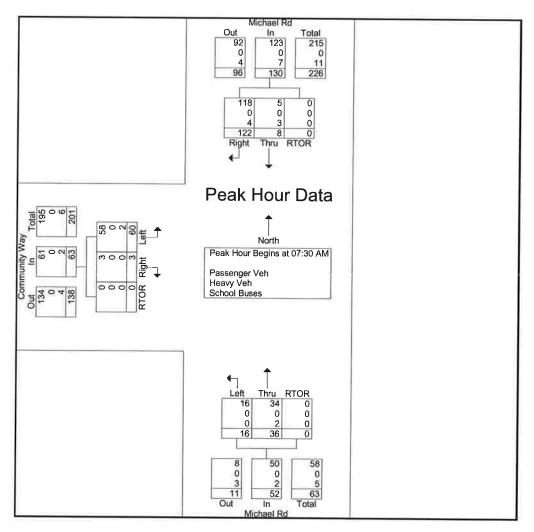
k

 File Name
 : TM115030AM2

 Site Code
 : 15-030-2

 Start Date
 : 2/24/2015

 Page No
 : 1


			inity Wa bound	У		-	ael Rd bound				ael Rd		
Start Time	Left	Right	RTOR	App. Total	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Tota
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:30 AM	13	0	0	13	1	10	0	11	1	17	0	18	42
06:45 AM	11	2	0	13	5	24	0	29	5	19	0	24	66
Total	24	2	0	26	6	34	0	40	6	36	0	42	108
07:00 AM	19	3	0	22	1	16	0	17	9	17	0	26	65
07:15 AM	17	1	0	18	0	7	0	7	5	18	0	23	48
07:30 AM	19	1	0	20	2	11	0	13	2	15	Ō	17	50
07:45 AM	11	1	0	12	4	8	0	12	1	36	0	37	61
Total	66	6	0	72	7	42	0	49	17	86	0	103	224
08:00 AM	16	0	0	16	5	10	0	15	2	27	0	29	60
08:15 AM	14	1	0	15	5	7	0	12	3	44	Ó	47	74
Grand Total	120	9	0	129	23	93	0	116	28	193	Ō	221	466
Apprch %	93	7	0		19.8	80.2	0		12.7	87.3	Ō		
Total %	25.8	1.9	0	27.7	4.9	20	0	24.9	6	41.4	Ó	47.4	
Passenger Veh	118	9	0	127	23	90	0	113	22	189	0	211	451
% Passenger Veh	98.3	100	0	98.4	100	96.8	0	97.4	78.6	97.9	0	95.5	96.8
Heavy Veh	0	0	0	0	0	0	0	0	0	0	0	0	0
% Heavy Veh	0	0	0	0	0	0	0	0	0	0	Ō	Ő	0
School Buses	2	0	0	2	0	3	0	3	6	4	0	10	15
% School Buses	1.7	0	0	1.6	0	3.2	0	2.6	21.4	2.1	0	4.5	3.2

...)

File Name : TM115030AM2 Site Code : 15-030-2 Start Date : 2/24/2015 Page No : 2

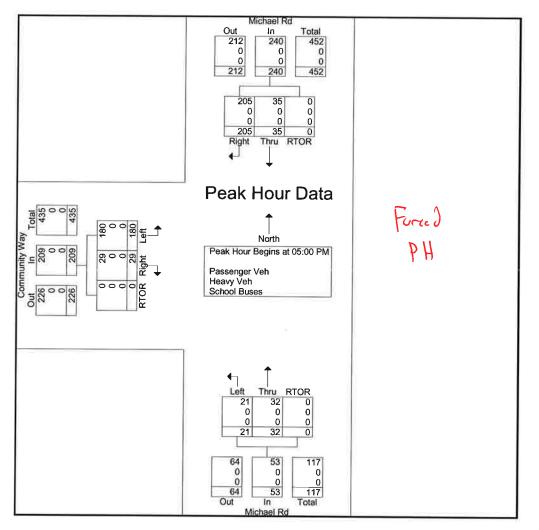
		East	inity Wa bound				ael Rd nbound				ael Rd ìbound		
Start Time	Left	Right	RTOR	App. Total	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Total
Peak Hour Analysi	s From 6:	30:00 AM	A to 8:15	00 AM - Pe	ak 1 of 1							. app ottai	inter rotai
Peak Hour for Entir	re Interse	ction Beg	gins at 7:	30:00 AM									
7:30:00 AM	19	1	0	20	2	11	0	13	2	15	0	17	50
7:45:00 AM	11	1	0	12	4	8	0	12	1	36	Ő	37	61
8:00:00 AM	16	0	0	16	5	10	0	15	2	27	Ő	29	60
8:15:00 AM	14	1_	0	15	5	7	0	12	3	44	õ	47	74
Total Volume	60	3	0	63	16	36	0	52	8	122	0	130	245
% App. Total	95.2	4.8	0		30.8	69.2	0		6.2	93.8	Õ		2.10
PHF	.789	.750	.000	.788	.800	.818	.000	.867	.667	.693	.000	.691	.828
Passenger Veh	58	3	0	61	16	34	0	50	5	118	0	123	234
% Passenger Veh	96.7	100	0	96.8	100	94.4	0	96.2	62.5	96.7	Ō	94.6	95.5
Heavy Veh	0	0	0	0	0	0	0	0	0	0	Ō	00	0.00
% Heavy Veh	0	0	0	0	0	0	0	ō	Ō	Ő	Ő	õ	ŏ
School Buses	2	0	0	2	0	2	0	2	3	4	Ō	7	11
% School Buses	3.3	0	0	3.2	0	5,6	0	3.8	37.5	3.3	õ	5.4	4.5

*

 File Name
 : TM115030PM2

 Site Code
 : 15-030-2

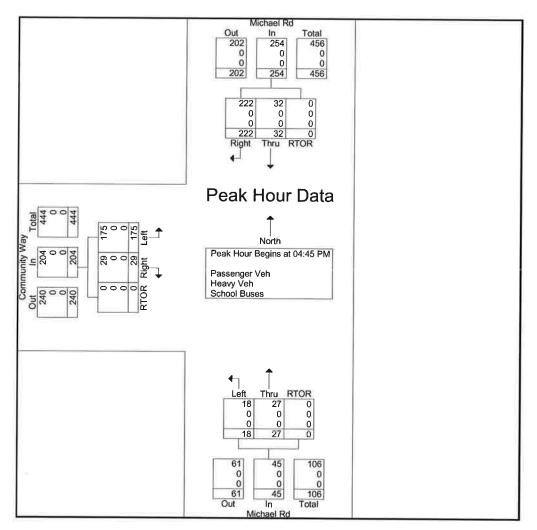
 Start Date
 : 2/26/2015


 Page No
 : 1

			inity Wa bound	У			ael Rd bound				ael Rd nbound		
Start Time	Left	Right	RTOR	App. Total	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Tota
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
04:00 PM	51	9	0	60	5	6	0	11	7	43	0	50	121
04:15 PM	33	9	0	42	5	4	0	9	10	48	0	58	109
04:30 PM	27	3	0	30	7	6	0	13	2	42	0	44	87
04:45 PM	31	10	0	41	5	5	0	10	7	64	0	71	122
Total	142	31	0	173	22	21	0	43	26	197	0	223	439
05:00 PM	52	7	0	59	2	8	0	10	6	46	0	52	121
05:15 PM	44	5	0	49	5	5	0	10	6	55	0	61	120
05:30 PM	48	7	0	55	6	9	0	15	13	57	0	70	140
05:45 PM	36	10	0	46	8	10	0	18	10	47	0	57	121
Total	180	29	0	209	21	32	0	53	35	205	0	240	502
Grand Total	322	60	0	382	43	53	0	96	61	402	0	463	941
Apprch %	84.3	15.7	0		44.8	55.2	0		13.2	86.8	0		
Total %	34.2	6.4	0	40.6	4.6	5.6	0	10.2	6.5	42.7	0	49.2	
Passenger Veh	315	60	0	375	42	53	0	95	61	395	0	456	926
% Passenger Veh	97.8	100	0	98.2	97.7	100	0	99	100	98.3	0	98.5	98.4
Heavy Veh	1	0	0	1	0	0	0	0	0	1	0	1	2
% Heavy Veh	0.3	0	0	0.3	0	0	0	0	0	0.2	0	0.2	0.2
School Buses	6	0	0	6	1	0	0	1	0	6	0	6	13
% School Buses	1.9	0	0	1.6	2.3	0	0	1	0	1.5	0	1.3	1.4

File Name : TM115030PM2 Site Code : 15-030-2 Start Date : 2/26/2015 Page No : 2

			nity Way oound	,			ael Rd bound				ael Rd		
Start Time	Left	Right		App. Total	Left		RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Total
Peak Hour Analysi	s From 5:						inion	ripp: rotar	ma	rugin	RIOR	App. Total	Int. TOtal
Peak Hour for Enti													
5:00:00 PM	52	7	0	59	2	8	0	10	6	46	0	52	121
5:15:00 PM	44	5	0	49	5	5	0	10	6	55	õ	61	120
5:30:00 PM	48	7	0	55	6	9	0	15	13	57	Ō	70	140
5:45:00 PM	36	10	0	46	8	10	0	18	10	47	0	57	121
Total Volume	180	29	0	209	21	32	0	53	35	205	0	240	502
% App. Total	86.1	13.9	0		39.6	60.4	0		14.6	85.4	Ō		002
PHF	.865	.725	.000	.886	.656	.800	.000	.736	.673	.899	.000	.857	.896
Passenger Veh	180	29	0	209	21	32	0	53	35	205	0	240	502
% Passenger Veh	100	100	0	100	100	100	0	100	100	100	0	100	100
Heavy Veh	0	0	0	0	0	0	0	0	0	0	Ō	0	0
% Heavy Veh	0	0	0	0	0	0	0	o	0	Ō	Ō	ŏ	Ő
School Buses	0	0	0	0	0	0	0	0	Ō	Ō	Ō	ŏ	Ő
% School Buses	0	0	0	0	0	0	0	0	0	Ō	Ō	õ	Ö


File Name : TM115030PM2 Site Code : 15-030-2 Start Date : 2/26/2015 Page No : 1

			unity Wa bound	У			ael Rd nbound				ael Rd 1bound		
Start Time	Left	Right	RTOR	App. Total	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Tota
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
04:00 PM	51	9	0	60	5	6	0	11	7	43	0	50	121
04:15 PM	33	9	0	42	5	4	0	9	10	48	0	58	109
04:30 PM	27	3	0	30	7	6	0	13	2	42	Ō	44	87
04:45 PM	31	10	0	41	5	5	0	10	7	64	Ō	71	122
Total	142	31	0	173	22	21	0	43	26	197	0	223	439
05:00 PM	52	7	0	59	2	8	0	10	6	46	0	52	121
05:15 PM	44	5	0	49	5	5	0	10	6	55	Ō	61	120
05:30 PM	48	7	0	55	6	9	0	15	13	57	Ō	70	140
05:45 PM	36	10	0	46	8	10	0	18	10	47	0	57	121
Total	180	29	0	209	21	32	0	53	35	205	0	240	502
Grand Total	322	60	0	382	43	53	0	96	61	402	0	463	941
Apprch %	84.3	15.7	0		44.8	55.2	0		13.2	86.8	0		
Total %	34.2	6.4	0	40.6	4.6	5.6	0	10.2	6.5	42.7	0	49.2	
Passenger Veh	315	60	0	375	42	53	0	95	61	395	0	456	926
% Passenger Veh	97.8	100	0	98.2	97.7	100	0	99	100	98.3	0	98.5	98.4
Heavy Veh	1	0	0	1	0	0	0	0	0	1	0	1	2
% Heavy Veh	0.3	0	0	0.3	0	0	0	0	0	0.2	0	0.2	0.2
School Buses	6	0	0	6	1	0	0 0	1	0	6	0	6	13
% School Buses	1.9	0	0	1.6	2.3	0	0	1	0	1.5	0	1.3	1.4

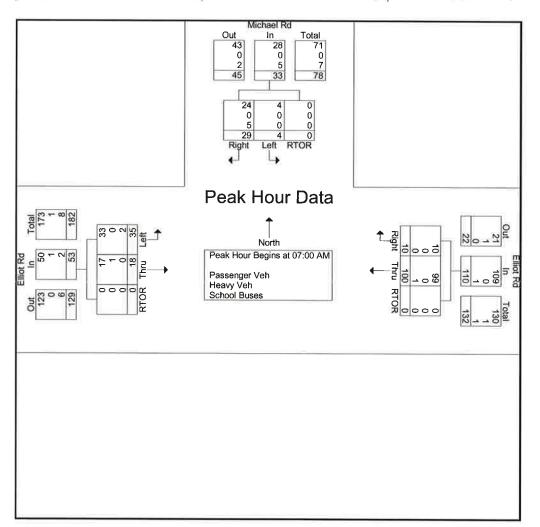
File Name : TM115030PM2 Site Code : 15-030-2 Start Date : 2/26/2015 Page No : 2

		East	nity Way bound	/			ael Rd nbound			-	ael Rd nbound		
Start Time	Left	Right	RTOR	App. Total	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Int. Total
Peak Hour Analysis	s From 4:	00:00 PN	1 to 5:45:	00 PM - Pe	ak 1 of 1								
Peak Hour for Entir	e Intersed	ction Beg	ins at 4:4	15:00 PM									
4:45:00 PM	31	10	0	41	5	5	0	10	7	64	0	71	122
5:00:00 PM	52	7	0	59	2	8	0	10	6	46	0	52	121
5:15:00 PM	44	5	0	49	5	5	0	10	6	55	Ō	61	120
5:30:00 PM	48	7	0	55	6	9	0	15	13	57	Ō	70	140
Total Volume	175	29	0	204	18	27	0	45	32	222	0	254	503
% App. Total	85.8	14.2	0		40	60	0		12.6	87.4	ō		
PHF	.841	.725	.000	.864	.750	.750	.000	.750	.615	.867	.000	.894	.898
Passenger Veh	175	29	0	204	18	27	0	45	32	222	0	254	503
% Passenger Veh	100	100	0	100	100	100	0	100	100	100	Ō	100	100
Heavy Veh	0	0	0	0	0	0	0	0	0	0	Ō	0	0
% Heavy Veh	0	0	0	0	0	0	0	0	0	0	õ	õ	õ
School Buses	0	0	0	0	0	0	0	0	0	0	Ō	ō	Ő
% School Buses	0	0	0	0	0	0	0	0	0	0	0	0	Ō

 File Name
 : TM115030AM3

 Site Code
 : 15-030-3

 Start Date
 : 2/26/2015


 Page No
 : 1

			Grou	ps Printed	Passen	ger Veh	- Heavy	Veh - Scho	ool Buse	s			
		East	ot Rd bound			Elli	ot Rd bound			Mich	ael Rd nbound		
Start Time	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Left	Right	RTOR	App. Total	Int. Total
Factor	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0		
06:30 AM	7	2	0	9	5	2	0	7	1	2	0	3	19
06:45 AM	21	5	0	26	9	4	0	13	1	4	0	5	44
Total	28	7	0	35	14	6	0	20	2	6	0	8	63
07:00 AM	14	7	0	21	21	2	0	23	0	7	0	7	51
07:15 AM	4	0	0	4	26	2	0	28	4	6	0	10	42
07:30 AM	6	2	0	8	34	1	0	35	0	7	0	7	50
07:45 AM	11	9	0	20	19	5	0	24	0	9	0	9	53
Total	35	18	0	53	100	10	0	110	4	29	0	33	196
08:00 AM	4	3	0	7	22	3	0	25	0	1	0	1	33
08:15 AM	8	3	0	11	23	0	0	23	1	1	0	2	36
Grand Total	75	31	0	106	159	19	0	178	7	37	0	44	328
Apprch %	70.8	29.2	0		89.3	10.7	0		15.9	84.1	0		
Total %	22.9	9.5	0	32.3	48.5	5.8	0	54.3	2.1	11.3	0	13.4	
assenger Veh	72	28	0	100	154	19	0	173	7	32	0	39	312
Passenger Veh	96	90.3	0	94.3	96.9	100	0	97.2	100	86.5	0	88.6	95.1
Heavy Veh	0	2	0	2	2	0	0	2	0	0	0	0	4
% Heavy Veh	0	6.5	0	1.9	1.3	0	0	1.1	0	0	0	0	1.2
School Buses	3	1	0	4	3	0	0	3	0	5	0	5	12
School Buses	4	3.2	0	3.8	1.9	0	0	1.7	0	13.5	0	11.4	3.7

File Name : TM115030AM3 Site Code : 15-030-3 Start Date : 2/26/2015 Page No : 2

			ot Rd bound				ot Rd bound				ael Rd bound		
Start Time	Left	Thru	RTOR	App. Total	Thru	Right	RTOR	App. Total	Left	Right	RTOR	App. Total	Int. Total
Peak Hour Analysis					ak 1 of 1					<u> </u>			
Peak Hour for Entir	re Intersed	ction Beg	gins at 7:0	MA 00:00									
7:00:00 AM	14	7	0	21	21	2	0	23	0	7	0	7	51
7:15:00 AM	4	0	0	4	26	2	0	28	4	6	0	10	42
7:30:00 AM	6	2	0	8	34	1	0	35	0	7	Ō	7	50
7:45:00 AM	11	9	0	20	19	5	0	24	0	9	Ō	9	53
Total Volume	35	18	0	53	100	10	0	110	4	29	0	33	196
% App. Total	66	34	0		90.9	9.1	0		12.1	87.9	0		00000
PHF	.625	.500	.000	.631	.735	.500	.000	.786	.250	.806	.000	.825	.925
Passenger Veh	33	17	0	50	99	10	0	109	4	24	0	28	187
% Passenger Veh	94.3	94.4	0	94.3	99.0	100	0	99.1	100	82.8	0	84.8	95.4
Heavy Veh	0	1	0	1	0	0	0	0	0	0	0	0	1
% Heavy Veh	0	5.6	0	1.9	0	0	0	0	0	0	0	0	0.5
School Buses	2	0	0	2	1	0	0	1	0	5	0	5	8
% School Buses	5.7	0	0	3.8	1.0	0	0	0.9	0	17.2	0	15.2	4.1

0.5

Heavy Veh

% Heavy Veh

School Buses

% School Buses

File Name : TM115030PM3 Site Code : 15-030-3 Start Date : 2/25/2015 Page No : 1

99.3 0

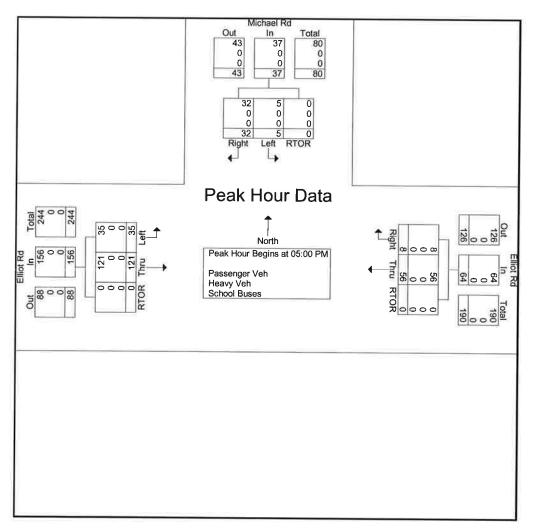
0.7

2 2.5

1		ael Rd bound				ot Rd bound				ot Rd bound			
Int. Total	App. Total	RTOR	Right	Left	App. Total	RTOR	Right	Thru	App. Total	RTOR	Thru	Left	Start Time
		1.0	1.0	1.0	- 1.10	1.0	1.0	1.0		1.0	1.0	1.0	Factor
51	13	0	10	3	9	0	1	8	29	0	26	3	04:00 PM
51	12	Ő	10	2	10	0	2	8	29	0	25	4	04:15 PM
51	8	Ō	5	3	10	0	1	9	33	0	29	4	04:30 PM
50	9	Ō	6	3	15	0	2	13	26	0	18	8	04:45 PM
203	42	0	31	11	44	0	6	38	117	0	98	19	Total
64	8	0	6	2	12	0	0	12	44	0	36	8	05:00 PM
60	8	Ō	8	0	13	0	1	12	39	0	30	9	05:15 PM
63	8	Ō	7	1	18	0	2	16	37	0	29	8	05:30 PM
70	13	Ō	11	2	21	0	5	16	36	0	26	10	05:45 PM
257	37	0	32	5	64	0	8	56	156	0	121	35	Total
460	79	0	63	16	108	0	14	94	273	0	219	54	Grand Total
		0	79.7	20.3		0	13	87		0	80.2	19.8	Apprch %
	17.2	0	13.7	3.5	23.5	0	3	20.4	59.3	0	47.6	11.7	Total %
457	77	0	62	15	108	0	14	94	272	0	218	54	senger Veh
99.3	97.5	0	98.4	93.8	100	0	100	100	99.6	0	99.5	100	assenger Veh
							-			0		0	I I a a state

0

6.2


1.6

0.4

File Name : TM115030PM3 Site Code : 15-030-3 Start Date : 2/25/2015 Page No : 2

			ot Rd bound				ot Rd bound				ael Rd bound		
Start Time	Left	Thru	RTOR	App. Total	Thru	Right		App. Total	Left	Right	RTOR	App. Total	Int. Total
Peak Hour Analysis	s From 4:	00:00 PM	A to 5:45	00 PM - Pe	ak 1 of 1			. app. rotal	Lon	ragin	Inform	App. rotar	int. rotar
Peak Hour for Entir	re Intersed	ction Beg	ins at 5:	00:00 PM	08900 11950 N.								
5:00:00 PM	8	36	0	44	12	0	0	12	2	6	0	8	64
5:15:00 PM	9	30	0	39	12	1	0	13	ō	8	Ő	8	60
5:30:00 PM	8	29	0	37	16	2	0	18	1	7	õ	8	63
5:45:00 PM	10	26	0	36	16	5	0	21	2	11	õ	13	70
Total Volume	35	121	0	156	56	8	0	64	5	32	0	37	257
% App. Total	22.4	77.6	0		87.5	12.5	0		13.5	86.5	Ō	0.	201
PHF	.875	.840	.000	.886	.875	.400	.000	.762	.625	.727	.000	.712	.918
Passenger Veh	35	121	0	156	56	8	0	64	5	32	0	37	257
% Passenger Veh	100	100	0	100	100	100	0	100	100	100	Ō	100	100
Heavy Veh	0	0	0	0	0	0	0	0	0	0	Ō	0	0
% Heavy Veh	0	0	0	0	0	0	0	0	0	0	Ō	ō	ō
School Buses	0	0	0	0	0	0	0	0	0	Ō	Õ	õ	õ
% School Buses	0	0	0	0	0	0	0	0	0	0	Ō	õ	Ő

Attachment C Level of Service Calculations

Covered Bridge Village Town of East Greenbush, New York

LOS Definitions

The following is an excerpt from the 2010 Highway Capacity Manual (HCM).

Level of Service for Signalized Intersections

Level of Service (LOS) can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay alone is used to characterize LOS for the entire intersection or an approach. Control delay *and* volume-to-capacity (v/c) ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to traffic signal control. It is also a surrogate measure of driver discomfort and fuel consumption. The v/c ratio quantifies the degree to which a phase's capacity is utilized by a lane group. The following paragraphs describe each LOS.

LOS A describes operations with a control delay of 10 s/veh or less and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

LOS B describes operations with control delay between 10 and 20 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

LOS C describes operations with control delay between 20 and 35 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual *cycle failures* (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

LOS D describes operations with control delay between 35 and 55 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

LOS E describes operations with control delay between 55 and 80 s/veh and a v/c ratio no greater than 1.0. This level is typically assigned when the v/c ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

LOS F describes operations with control delay exceeding 80 s/veh or a v/c ratio greater than 1.0. This level is typically assigned when the v/c ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

A lane group can incur a delay less than 80 s/veh when the v/c ratio exceeds 1.0. This condition typically occurs when the cycle length is short, the signal progression is favorable, or both. As a result, both the delay and v/c ratio are considered when lane group LOS is established. A ratio of 1.0 or more indicates that cycle capacity is fully utilized and represents failure from a capacity perspective (just as delay in excess of 80 s/veh represents failure from a delay perspective).

Average control delay and queue length at roundabout controlled intersections are calculated using SIDRA Intersection. The physical geometry such as entry lane width and approach flare, and traffic volume at the roundabout are factors that influence the intersection's performance. The average delay reported using SIDRA Intersection is based on the signalized HCM Method of Delay for Level-of-Service.

Level of Service Criteria for Unsignalized Intersections

Level of service (LOS) for Two-Way Stop-Controlled (TWSC) intersections is determined by the computed or measured control delay. For motor vehicles, LOS is determined for each minor-street movement (or shared movement) as well as major-street left turns by using criteria given in Exhibit 19-1. LOS is not defined for the intersection as a whole or for major-street approaches for three primary reasons: (a) major-street through vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through vehicles at a typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay for all vehicles; and (c) the resulting low delay can mask important LOS deficiencies for minor movements. LOS F is assigned to the movement if the volume-to-capacity (v/c) ratio for the movement exceeds 1.0, regardless of the control delay.

The LOS criteria for TWSC intersections are somewhat different from the criteria used in Chapter 18 for signalized intersections, primarily because user perceptions differ among transportation facility types. The expectation is that a signalized intersection is designed to carry higher traffic volumes and will present greater delay than an unsignalized intersection. Unsignalized intersections are also associated with more uncertainty for users, as delays are less predictable than they are at signals, which can reduce users' delay tolerance.

The LOS criteria for All-Way Stop-Controlled (AWSC) intersections are given in Exhibit 20-2. LOS F is assigned if the v/c ratio of a lane exceeds 1.0, regardless of the control delay. For assessment of LOS at the approach and intersection levels, LOS is based solely on control delay.

Control Delay (s/veh)	LOS by Volume-t	o-Capacity Ratio
control Delay (3/ Vell)	v/c <u><</u> 1.0	v/c <u>≥</u> 1.0
10.0	А	F
>10.0 and <u><</u> 15.0	В	F
>15.0 and <u><</u> 25.0	С	F
>25.0 and <u><</u> 35.0	D	F
>35.0 and <u><</u> 50.0	E	F
>50.0	F	F

Exhibits 19-1/20-2: Level-of-Service Criteria for Stop Controlled Intersections

	≯	+	\mathbf{r}	4	+	×.	•	1	1	\$	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्च	1		4	
Traffic Volume (veh/h)	1	283	56	37	405	1	70	1	54	1	1	1
Future Volume (veh/h)	1	283	56	37	405	1	70	1	54	1	1	1
lnitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1752	1752	1767	1767	1767	1885	1885	1841	1900	1900	1900
Adj Flow Rate, veh/h	1	368	73	48	526	1	91	1	70	1	1	1
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Percent Heavy Veh, %	10	10	10	9	9	9	1	1	4	0	0	0
Cap, veh/h	156	648	128	201	741	1	485	2	176	241	62	48
Arrive On Green	0.46	0.46	0.46	0.46	0.46	0.46	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1	1419	281	72	1622	3	1568	17	1560	305	546	425
Grp Volume(v), veh/h	442	0	0	575	0	0	92	0	70	3	0	0
Grp Sat Flow(s),veh/h/ln	1700	0	0	1696	0	0	1586	0	1560	1276	0	0
Q Serve(g_s), s	0.0	0.0	0.0	1.2	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
Cycle Q Clear(g_c), s	4.4	0.0	0.0	6.2	0.0	0.0	1.1	0.0	1.0	1.1	0,0	0.0
Prop In Lane	0.00		0.17	0.08		0.00	0.99		1.00	0.33		0.33
Lane Grp Cap(c), veh/h	932	0	0	943	0	0	487	0	176	351	0	0
V/C Ratio(X)	0.47	0.00	0.00	0.61	0.00	0.00	0.19	0.00	0.40	0.01	0.00	0.00
Avail Cap(c_a), veh/h	3810	0	0	3713	0	0	2173	0	2015	2224	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	4.6	0.0	0.0	5.1	0.0	0.0	9.6	0.0	9.6	9.2	0.0	0.0
Incr Delay (d2), s/veh	0.4	0.0	0.0	0.6	0.0	0.0	0.2	0.0	1.5	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.1	0.0	0.0	0.2	0.0	0.0	0.3	0.0	0.3	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.0	0.0	0.0	5.7	0.0	0.0	9.8	0.0	11.0	9.2	0.0	0.0
LnGrp LOS	А	Α	Α	Α	A	A	A	A	В	A	Α	A
Approach Vol, veh/h		442			575			162			3	
Approach Delay, s/veh		5.0			5.7			10.3			9.2	
Approach LOS		А			А			В			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		7.6		15.6		7.6		15.6				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+l1), s		3.1		6.4		3.1		8.2				
Green Ext Time (p_c), s		0.5		1.7		0.0		2.4				
Intersection Summary												
HCM 6th Ctrl Delay			6.1									
HCM 6th LOS			А									

Intersection						
Int Delay, s/veh	3.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	ţ.	
Traffic Vol, veh/h	66		8	58	22	71
Future Vol, veh/h	66		8	58	22	71
Conflicting Peds, #/hr	0		0	0	0	0
Sign Control	Stop		Free	Free	Free	Free
RT Channelized	-	None		None		None
Storage Length	0	-	-	-		1
Veh in Median Storage,		14	L.	0	0	1940
Grade, %	0	-	-	Õ	0	-
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	0	0	0	2	19	0
Mvmt Flow	76	8	9	67	25	82
	10	0	3	07	25	02
	/linor2		Major1	N	/lajor2	
Conflicting Flow All	151	66	107	0	5	0
Stage 1	66		(4)	(1)	1	
Stage 2	85			2	-	-
Critical Hdwy	6.4	6.2	4.1			
Critical Hdwy Stg 1	5.4	-	-	-		
Critical Hdwy Stg 2	5.4	-				2 .
Follow-up Hdwy	3.5	3.3	2.2		3 .	19 4 0
Pot Cap-1 Maneuver	846	1003	1497		3 6 3	340
Stage 1	962	1.		-	8 4 0	
Stage 2	943		(1)		-	100
Platoon blocked, %				20		2
Mov Cap-1 Maneuver	841	1003	1497			
Mov Cap-2 Maneuver	841	-	-	170	-	1770
Stage 1	956	_	-			
-	956 943	-	-		200	
Stage 2	543	-	-		(#)	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.7		0.9		0	
HCM LOS	А					
Minor Lane/Major Mvmt		NBL	NBT E	EBLn1	SBT	SBR
Capacity (veh/h)		1497	-	854	-	
HCM Lane V/C Ratio		0.006		0.098	-	20 (#
HCM Control Delay (s)		7.4	0	9.7		ĩ
HCM Lane LOS		A	Ă	A		
HCM 95th %tile Q(veh)		Ő	-	0.3	2	
		U	-	0.0	-	-

Int Delay, s/veh	2.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		्र	Þ		۳Y	
Traffic Vol, veh/h	35	18	100	10	4	29
Future Vol, veh/h	35	18	100	10	4	29
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	۲	None	-	None
Storage Length	353	-	-		0	(
Veh in Median Storage	e,# -	0	0		0	5 4 .0
Grade, %	-	0	0		0	247
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	6	1	0	0	17
Mvmt Flow	38	19	108	11	4	31
	00	10	100		-	01
N 4 - 1 /N 41						
	Major1		Aajor2		Minor2	
Conflicting Flow All	119	0	220	0	209	114
Stage 1		÷.	200	-	114	-
Stage 2	200	340	(=)	-	95	2
Critical Hdwy	4.16	-		-	6.4	6.37
Critical Hdwy Stg 1	200		-	-	5.4	-
Critical Hdwy Stg 2		٠	•	-	5.4	2
Follow-up Hdwy	2.254	電の		-	3.5	3.453
Pot Cap-1 Maneuver	1444	: .	200	-	784	900
Stage 1			(.)	-	916	
Stage 2	·••);			-	934	4
Platoon blocked, %		9 4 5	-	24		
Mov Cap-1 Maneuver	1444		5 1	-	763	900
Mov Cap-2 Maneuver	20	-	÷.	÷.	763	-
Stage 1			-	, i	891	-
	-	-	-			
		-	्र -	-	934	-
Stage 2	5	đ đ	5 2	3	934	-
Stage 2		2				-
Stage 2 Approach	EB		- WB		SB	-
Stage 2 Approach HCM Control Delay, s					<u>SB</u> 9.3	-
Stage 2 Approach	EB		- WB		SB	-
Stage 2 Approach HCM Control Delay, s HCM LOS	EB 5	-	- WB 0		SB 9.3 A	
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvrr	EB 5	EBL	- WB	- WBT	<u>SB</u> 9.3	SBLn1
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	EB 5	1444	- WB 0	- WBT -	SB 9.3 A	SBLn1 881
Stage 2 <u>Approach</u> HCM Control Delay, s HCM LOS <u>Minor Lane/Major Mvrr</u> Capacity (veh/h) HCM Lane V/C Ratio	EB 5	1444 0.026	WB 0 EBT		SB 9.3 A WBR S	SBLn1 881 0.04
Stage 2 <u>Approach</u> HCM Control Delay, s HCM LOS <u>Minor Lane/Major Mvrr</u> Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	EB 5	1444 0.026 7.6	WB 0 EBT - 0		SB 9.3 A WBR S	SBLn1 881 0.04 9.3
Stage 2 <u>Approach</u> HCM Control Delay, s HCM LOS <u>Minor Lane/Major Mvrr</u> Capacity (veh/h) HCM Lane V/C Ratio	EB 5	1444 0.026	WB 0 EBT		SB 9.3 A WBR 5	SBLn1 881 0.04

	۶	-	\mathbf{r}	<	+	۰.	1	1	1	1	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			स	7		4	
Traffic Volume (veh/h)	10	300	65	39	448	4	91	1	57	5	1	22
Future Volume (veh/h)	10	300	65	39	448	4	91	1	57	5	1	22
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1752	1752	1767	1767	1767	1885	1885	1841	1900	1900	1900
Adj Flow Rate, veh/h	13	390	84	51	582	5	118	1	74	6	1	29
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Percent Heavy Veh, %	10	10	10	9	9	9	1	1	4	0	0	0
Cap, veh/h	149	666	140	182	779	6	483	2	207	180	16	145
Arrive On Green	0.48	0.48	0.48	0.48	0.48	0.48	0.13	0.13	0.13	0.13	0.13	0.13
Sat Flow, veh/h	15	1376	290	69	1611	13	1568	13	1560	140	123	1092
Grp Volume(v), veh/h	487	0	0	638	0	0	119	0	74	36	0	0
Grp Sat Flow(s), veh/h/ln	1681	0	0	1693	0	0	1581	0	1560	1356	0	0
Q Serve(g_s), s	0.0	0.0	0.0	1.9	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	5.4	0.0	0.0	7.9	0.0	0.0	1.6	0.0	1.1	1.6	0.0	0.0
Prop In Lane	0.03		0.17	0.08		0.01	0.99		1.00	0.17		0.81
Lane Grp Cap(c), veh/h	955	0	0	968	0	0	485	0	207	341	0	0
V/C Ratio(X)	0.51	0.00	0.00	0.66	0.00	0.00	0.25	0.00	0.36	0.11	0.00	0.00
Avail Cap(c_a), veh/h	3315	0	0	3305	0	0	1903	0	1795	1935	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	4.9	0.0	0.0	5.5	0.0	0.0	10.5	0.0	10.3	10.0	0.0	0.0
Incr Delay (d2), s/veh	0.4	0.0	0.0	0.8	0.0	0.0	0.3	0.0	1.0	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	0.0	0.0	0.4	0.0	0.0	0.5	0.0	0.3	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.3	0.0	0.0	6.2	0.0	0.0	10.8	0.0	11.3	10.2	0.0	0.0
LnGrp LOS	A	A	A	A	А	А	В	А	В	В	А	А
Approach Vol, veh/h		487			638			193			36	
Approach Delay, s/veh		5.3			6.2			11.0			10.2	
Approach LOS		A			A			В			В	
		2		4		6		8				
Timer - Assigned Phs	_					8.5		17.6				
Phs Duration (G+Y+Rc), s		8.5		17.6		o.o 5.0		5.0				
Change Period (Y+Rc), s		5.0		5.0		5.0 30.0		50.0 50.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0 3.6		9.9				
Max Q Clear Time (g_c+l1), s		3.6		7.4				9.9 2.8				
Green Ext Time (p_c), s		0.7		1.9		0.1		2.0				
Intersection Summary			~ 7									
HCM 6th Ctrl Delay			6.7									
HCM 6th LOS			А									

Intersection						
Int Delay, s/veh	2.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		स	4		Y	
Traffic Vol, veh/h	38	22	115	28	10	31
Future Vol, veh/h	38	22	115	28	10	31
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	85	None
Storage Length	-	-	-		0	
Veh in Median Storage	,# -	0	0	-	0)).
Grade, %	-	0	0	-	0	36
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	6	1	0	0	17
Mvmt Flow	41	24	124	30	11	33
Major/Minor	Major1	٨	Major2	Ν	Minor2	
Conflicting Flow All	154	0		0	245	139
-	104	U		-	139	159
Stage 1	-	-			106	
Stage 2		-		-	6.4	- 6.37
Critical Hdwy	4.16	-		-	5.4	0.37
Critical Hdwy Stg 1	5	8		-	5.4 5.4	
Critical Hdwy Stg 2	5 0.054			-		- 3.453
Follow-up Hdwy	2.254	5	5	-	3.5	
Pot Cap-1 Maneuver	1402		-	-	748	871
Stage 1	-	-	-	-	893	-
Stage 2	-	-	-	-	923	1
Platoon blocked, %		2	-	÷.	700	074
Mov Cap-1 Maneuver	1402	•		-	726	871
Mov Cap-2 Maneuver		7			726	٠
Stage 1	T:	5	5	5	866	
Stage 2	×	₩.	5		923	
Approach	EB		WB		SB	
HCM Control Delay, s	4.8		0		9.6	
HCM LOS					А	
Minor Lane/Major Mvm	. +	EBL	EBT		WBR	SBI n1
	n		_	VVDT	VUDI	831
Capacity (veh/h)		1402	5			0.053
HCM Lane V/C Ratio		0.029	-	78	77	
HCM Control Delay (s)		7.6	0	₹.	-	9.6
HCM Lane LOS	`	A	А	-	-	A
HCM 95th %tile Q(veh))	0.1	-	-		0.2

	۶	-+	7	4	+		1	1	1	\$	Ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स	1		- 4 2-	
Traffic Volume (veh/h)	10	300	83	44	448	4	153	1	72	5	1	22
Future Volume (veh/h)	10	300	83	44	448	4	153	1	72	5	1	22
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1752	1752	1767	1767	1767	1885	1885	1841	1900	1900	1900
Adj Flow Rate, veh/h	13	390	108	57	582	5	199	1	94	6	1	29
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Percent Heavy Veh, %	10	10	10	9	9	9	1	1	4	0	0	0
Cap, veh/h	128	613	166	166	749	6	546	2	315	160	40	254
Arrive On Green	0.47	0.47	0.47	0.47	0.47	0.47	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	14	1304	353	80	1591	13	1540	8	1560	108	196	1260
Grp Volume(v), veh/h	511	0	0	644	0	0	200	0	94	36	0	0
Grp Sat Flow(s), veh/h/ln	1671	0	0	1685	0	0	1548	0	1560	1565	0	0
Q Serve(g_s), s	0.0	0.0	0.0	2.7	0.0	0.0	0.9	0.0	1.6	0.0	0.0	0.0
Cycle Q Clear(g_c), s	7.0	0.0	0.0	9.7	0.0	0.0	3.3	0.0	1.6	3.6	0.0	0.0
Prop In Lane	0.03		0.21	0.09		0.01	0.99		1.00	0.17		0.81
Lane Grp Cap(c), veh/h	907	0	0	921	0	0	548	0	315	453	0	0
V/C Ratio(X)	0.56	0.00	0.00	0.70	0.00	0.00	0.37	0.00	0.30	0.08	0.00	0.00
Avail Cap(c_a), veh/h	2821	0	0	2803	0	0	1636	0	1534	1673	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	6.1	0.0	0.0	6.8	0.0	0.0	11.0	0.0	10.3	9.9	0.0	0.0
Incr Delay (d2), s/veh	0.6	0.0	0.0	1.0	0.0	0.0	0.4	0.0	0.5	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.8	0.0	0.0	1.2	0.0	0.0	0.9	0.0	0.4	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	6.7	0.0	0.0	7.7	0.0	0.0	11.4	0.0	10.9	10.0	0.0	0.0
LnGrp LOS	Α	А	А	А	А	А	В	А	В	В	А	A
Approach Vol, veh/h		511			644			294			36	
Approach Delay, s/veh		6.7			7.7			11.2			10.0	
Approach LOS		А			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		11.1		19.4		11.1		19.4				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+I1), s		5.3		9.0		5.6		11.7				
Green Ext Time (p_c), s		1.1		2.1		0.1		2.8				
Intersection Summary												
HCM 6th Ctrl Delay			8.1									
HCM 6th LOS			А									

Intersection						
Int Delay, s/veh	2.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			स	₽	
Traffic Vol, veh/h	69	7	8	156	53	75
Future Vol, veh/h	69	7	8	156	53	75
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None	-	None	-	None
Storage Length	0			-		
Veh in Median Storage,				0	0	
Grade, %	0			Õ	Õ	-
Peak Hour Factor	87	87	87	87	87	87
	0	0	0	2	19	0
Heavy Vehicles, %		8		2 179	61	86
Mvmt Flow	79	8	9	179	01	00
Major/Minor N	/linor2	ľ	Major1	Ν	Aajor2	
Conflicting Flow All	301	104	147	0		0
Stage 1	104					540
Stage 2	197			-	1	520
Critical Hdwy	6.4	6.2	4.1		-	
Critical Hdwy Stg 1	5.4			-	-	-
Critical Hdwy Stg 2	5.4					
Follow-up Hdwy	3.5	3.3	2.2			
Pot Cap-1 Maneuver	695	956	1447			
Stage 1	925	350	1771			
	925 841	1257				
Stage 2	041	-	-	.25		
Platoon blocked, %	000	050	4447	2.00		
Mov Cap-1 Maneuver	690	956	1447	174		-
Mov Cap-2 Maneuver	690	-	-	355	8 .	
Stage 1	919	-	-	: . :	()	
Stage 2	841	-	-	-		•
Approach	EB		NB		SB	
HCM Control Delay, s	10.8		0.4		0	
HCM LOS	В					
	_					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1447	-	708		-
HCM Lane V/C Ratio		0.006	-	0.123	8.5	15
		0.008 7.5	_	10.123	1958 1958	181
HCM Control Delay (s)			0		() ())	3. 0 3
HCM Lane LOS HCM 95th %tile Q(veh)		A	A	В 0.4		(•)
HUM YOTH WITH UT (VAN)		0	-	U.4		-

Intersection						
Int Delay, s/veh	3.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		्र	12		۰Y	
Traffic Vol, veh/h	44	22	115	29	15	51
Future Vol, veh/h	44	22	115	29	15	51
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None		None	5 .	None
Storage Length	-	•	-	-	0	3 9 5
Veh in Median Storage	e, # -	0	0	-	0	
Grade, %	-	0	0	-	0	(2 2
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	6	6	1	0	0	17
Mvmt Flow	47	24	124	31	16	55
Major/Minor	Major1	ſ	Major2	Ν	Minor2	
Conflicting Flow All	155	0		0	258	140
Stage 1				-	140	۲
Stage 2	(•		1	_	118	1
Critical Hdwy	4.16	-		-	6.4	6.37
Critical Hdwy Stg 1				-	5.4	
Critical Hdwy Stg 2		-		-	5.4	
Follow-up Hdwy	2.254	-	2.42	-		3.453
Pot Cap-1 Maneuver	1401			-	735	870
Stage 1	-	-	24	_	892	
Stage 2	12		12	_	912	-
Platoon blocked, %			1	525	012	
Mov Cap-1 Maneuver	1401	1075			710	870
	1401		07		710	0/0
Mov Cap-2 Maneuver			5.5		862	-
Stage 1	-	-		-	912	-
Stage 2	-			-	912	-
					00	
Approach	EB		WB		SB	
HCM Control Delay, s	5.1		0		9.8	
HCM LOS					А	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		1401		-	2	828
HCM Lane V/C Ratio		0.034	-	-		0.086
HCM Control Delay (s))	7.7	0	÷		9.8
HCM Lane LOS	,	А	А	×	-	А
HCM 95th %tile Q(veh)	0.1	-	2	4	0.3
HCM Lane LOS		А		-	-	/

Intersection						
Int Delay, s/veh	4.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		4			ર્સ
Traffic Vol, veh/h	25	77	87	7	23	37
Future Vol, veh/h	25	77	87	7	23	37
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-		-	-	-
Veh in Median Storage,		14	0	_		0
-	# 0		0	-		0
Grade, %	87	- 87	87	- 87	- 87	87
Peak Hour Factor						
Heavy Vehicles, %	0	0	2	0	0	19
Mvmt Flow	29	89	100	8	26	43
Major/Minor M	/linor1	Ν	Major1	r	Major2	
Conflicting Flow All	199	104	0	0	108	0
Stage 1	104	101		Ŭ	100	
Stage 2	95		124	127	120	
	6.4	6.2	- 2	- 2	4.1	
Critical Hdwy			070			
Critical Hdwy Stg 1	5.4	15		8 7 .	0.72	-
Critical Hdwy Stg 2	5.4	-	(10	-	5. .
Follow-up Hdwy	3.5	3.3	-	-	2.2	
Pot Cap-1 Maneuver	794	956	200	-	1495	
Stage 1	925		33 <u>4</u> 3	(•)	(-)	3 4 7
Stage 2	934	-	-	1.		
Platoon blocked, %			. •			-
Mov Cap-1 Maneuver	780	956	-	-	1495	-
Mov Cap-2 Maneuver	780	-	-	8.00	5 7 5	
Stage 1	908	-	-			
Stage 2	934	-	-			
Clugo L	001					
Approach	WB		NB		SB	
HCM Control Delay, s	9.6		0		2.9	
HCM LOS	A		v		2.0	
	~					
Minor Lane/Major Mvmt	t	NBT		WBLn1	SBL	SBT
						001
Capacity (veh/h)		*	T :	906		-
HCM Lane V/C Ratio		-	-	0.129		-
		÷.	-	9.6	7.5	0
HCM Control Delay (s)					-	
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		¥.	-	A 0.4	A 0.1	А

	۶	-+	7	1	+	*	1	1	1	1	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			र्च	7		4	
Traffic Volume (veh/h)	10	307	65	39	505	4	91	1	57	5	1	22
Future Volume (veh/h)	10	307	65	39	505	4	91	1	57	5	1	22
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1752	1752	1767	1767	1767	1885	1885	1841	1900	1900	1900
Adj Flow Rate, veh/h	13	399	84	51	656	5	118	1	74	6	1	29
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Percent Heavy Veh, %	10	10	10	9	9	9	1	1	4	0	0	0
Cap, veh/h	137	717	148	167	844	6	457	2	203	165	17	146
Arrive On Green	0.52	0.52	0.52	0.52	0.52	0.52	0.13	0.13	0.13	0.13	0.13	0.13
Sat Flow, veh/h	14	1382	285	61	1627	12	1572	13	1560	137	133	1121
Grp Volume(v), veh/h	496	0	0	712	0	0	119	0	74	36	0	0
Grp Sat Flow(s), veh/h/ln	1681	0	0	1700	0	0	1586	0	1560	1391	0	0
Q Serve(g_s), s	0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.0	1.2	0.0	0.0	0.0
Cycle Q Clear(g_c), s	5.6	0.0	0.0	9.6	0.0	0.0	1.8	0.0	1.2	1.8	0.0	0.0
Prop In Lane	0.03		0.17	0.07		0.01	0.99		1.00	0.17		0.81
Lane Grp Cap(c), veh/h	1001	0	0	1017	0	0	458	0	203	329	0	0
V/C Ratio(X)	0.50	0.00	0.00	0.70	0.00	0.00	0.26	0.00	0.36	0.11	0.00	0.00
Avail Cap(c_a), veh/h	3032	0	0	3048	0	0	1745	0	1644	1774	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	4.7	0.0	0.0	5.5	0.0	0.0	11.5	0.0	11.3	11.0	0.0	0.0
Incr Delay (d2), s/veh	0.4	0.0	0.0	0.9	0.0	0.0	0.3	0.0	1.1	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	0.0	0.6	0.0	0.0	0.5	0.0	0.4	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.0	0.0	0.0	6.4	0.0	0.0	11.8	0.0	12.4	11.2	0.0	0.0
LnGrp LOS	А	Α	А	Α	А	Α	В	А	В	В	А	Α
Approach Vol, veh/h		496			712			193			36	
Approach Delay, s/veh		5.0			6.4			12.0			11.2	
Approach LOS		А			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		8.7		19.8		8.7		19.8				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+l1), s		3.8		7.6		3.8		11.6				
Green Ext Time (p_c), s		0.7		2.0		0.1		3.2				
Intersection Summary												
HCM 6th Ctrl Delay			6.8									
HCM 6th LOS			А									

	۶	-	\mathbf{r}	1	-	×.	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स	1		- 4 2-	
Traffic Volume (veh/h)	10	307	83	44	505	4	153	1	72	5	1	22
Future Volume (veh/h)	10	307	83	44	505	4	153	1	72	5	1	22
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1752	1752	1767	1767	1767	1885	1885	1841	1900	1900	1900
Adj Flow Rate, veh/h	13	399	108	57	656	5	199	1	94	6	1	29
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Percent Heavy Veh, %	10	10	10	9	9	9	1	1	4	0	0	0
Cap, veh/h	116	669	177	152	817	6	520	2	302	146	39	248
Arrive On Green	0.51	0.51	0.51	0.51	0.51	0.51	0.19	0.19	0.19	0.19	0.19	0.19
Sat Flow, veh/h	13	1312	347	72	1603	12	1587	8	1560	110	200	1282
Grp Volume(v), veh/h	520	0	0	718	0	0	200	0	94	36	0	0
Grp Sat Flow(s),veh/h/ln	1673	0	0	1686	0	0	1595	0	1560	1591	0	0
Q Serve(g_s), s	0.0	0.0	0.0	4.3	0.0	0.0	0.2	0.0	1.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	7.3	0.0	0.0	11.9	0.0	0.0	3.5	0.0	1.7	3.8	0.0	0.0
Prop In Lane	0.02		0.21	0.08		0.01	0.99		1.00	0.17		0.81
Lane Grp Cap(c), veh/h	962	0	0	975	0	0	522	0	302	432	0	0
V/C Ratio(X)	0.54	0.00	0.00	0.74	0.00	0.00	0.38	0.00	0.31	0.08	0.00	0.00
Avail Cap(c_a), veh/h	2553	0	0	2556	0	0	1492	0	1389	1519	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	5.9	0.0	0.0	6.9	0.0	0.0	12.3	0.0	11.7	11.2	0.0	0.0
Incr Delay (d2), s/veh	0.5	0.0	0.0	1.1	0.0	0.0	0.5	0.0	0.6	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.9	0.0	0.0	1.6	0.0	0.0	1.1	0.0	0.5	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	6.3	0.0	0.0	8.0	0.0	0.0	12.8	0.0	12.2	11.3	0.0	0.0
LnGrp LOS	Α	A	A	Α	Α	Α	В	Α	B	B	A	A
Approach Vol, veh/h		520			718			294			36	
Approach Delay, s/veh		6.3			8.0			12.6			11.3	
Approach LOS		А			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		11.4		22.2		11.4		22.2				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+l1), s		5.5		9.3		5.8		13.9				
Green Ext Time (p_c), s		1.1		2,1		0.1		3.3				
Intersection Summary												
HCM 6th Ctrl Delay			8.4									
HCM 6th LOS			А									

	≯	-+	\mathbf{r}	4	+	*	•	1	1	\$	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्स	1		4	
Traffic Volume (veh/h)	1	418	198	42	169	1	164	1	55	1	1	1
Future Volume (veh/h)	1	418	198	42	169	1	164	1	55	1	1	1
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1870	1870	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	1	440	208	44	178	1	173	1	58	1	1	1
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	2	2	2	0	0	0	0	0	0
Cap, veh/h	133	577	272	235	732	4	525	2	257	214	133	85
Arrive On Green	0.47	0.47	0.47	0.47	0.47	0.47	0.16	0.16	0.16	0.16	0.16	0.16
Sat Flow, veh/h	1	1220	576	163	1547	8	1638	9	1610	234	832	533
Grp Volume(v), veh/h	649	0	0	223	0	0	174	0	58	3	0	0
Grp Sat Flow(s),veh/h/ln	1796	0	0	1718	0	0	1647	0	1610	1599	0	0
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0
Cycle Q Clear(g_c), s	8.1	0.0	0.0	1.9	0.0	0.0	2.4	0.0	0.9	2.4	0.0	0.0
Prop In Lane	0.00		0.32	0.20		0.00	0.99		1.00	0.33		0.33
Lane Grp Cap(c), veh/h	982	0	0	971	0	0	527	0	257	432	0	0
V/C Ratio(X)	0.66	0.00	0.00	0.23	0.00	0.00	0.33	0.00	0.23	0.01	0.00	0.00
Avail Cap(c_a), veh/h	3430	0	0	2972	0	0	1883	0	1774	1935	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	5.9	0.0	0.0	4.3	0.0	0.0	10.6	0.0	10.0	9.6	0.0	0.0
Incr Delay (d2), s/veh	0.8	0.0	0.0	0.1	0.0	0.0	0.4	0.0	0.4	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	0.0	0.0	0.1	0.0	0.0	0.7	0.0	0.2	0.0	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	6.7	0.0	0.0	4.4	0.0	0.0	11.0	0.0	10.4	9.6	0.0	0.0
LnGrp LOS	A	Α	A	Α	A	A	B	Α	B	A	A	A
Approach Vol, veh/h		649			223			232			3	
Approach Delay, s/veh		6.7			4.4			10.9			9.6	
Approach LOS		А			А			В			А	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		9.3		17.9		9.3		17.9				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+l1), s		4.4		10.1		4.4		3.9				
Green Ext Time (p_c), s		0.8		2.8		0.0		0.9				
Intersection Summary												
HCM 6th Ctrl Delay			7.1									
HCM 6th LOS			А									

Intersection						
Int Delay, s/veh	5.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			स	Þ	
Traffic Vol, veh/h	186	29	21	33	35	205
Future Vol, veh/h	186	29	21	33	35	205
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	· .	None			-	None
Storage Length	0	-		-	-	3 4 5
Veh in Median Storage			-	0	0	
Grade, %	0	-		Ő	Ō	(a)
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	207	32	23	37	39	228
	201	52	20	57	00	220
	/linor2		Major1		Aajor2	
Conflicting Flow All	236	153	267	0	300	0
Stage 1	153	2 4 7	1 - C	19 1 2		
Stage 2	83		12)#)	-	-
Critical Hdwy	6.4	6.2	4.1	-		
Critical Hdwy Stg 1	5.4	-				
Critical Hdwy Stg 2	5.4			1.00	()	
Follow-up Hdwy	3.5	3.3	2.2	5 .		: + :
Pot Cap-1 Maneuver	757	898	1308	3 4 0		
Stage 1	880		140	2 4 3	-	-
Stage 2	945			720	740	
Platoon blocked, %				140		
Mov Cap-1 Maneuver	743	898	1308	-		
Mov Cap-2 Maneuver	743					
Stage 1	864		_	:50	30	
Stage 2	945	-	-	5	-	-
Slaye z	940	-	-	-		:=.:
A						
Approach	EB		NB		SB	
HCM Control Delay, s	11.9		3		0	
HCM LOS	В					
Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1308	-	761	-	-
HCM Lane V/C Ratio		0.018		0.314	-	5
HCM Control Delay (s)		7.8	0	11.9		
HCM Lane LOS		7.0 A	A	B	-	-
HCM 95th %tile Q(veh)		0.1	-	1.3	-	
		0.1	-	1.3	-	-

Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		र्स	4		Y	
Traffic Vol, veh/h	35	121	56	8	5	32
Future Vol, veh/h	35	121	56	8	5	32
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length		-	-	-	0	-
Veh in Median Storage	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	38	132	61	9	5	35
			•	U	Ŭ	
	Major1		Major2		/linor2	
Conflicting Flow All	70	0		0	274	66
Stage 1				-	66	-
Stage 2		-	-	-	208	-
Critical Hdwy	4.1	٠	•	•	6.4	6.2
Critical Hdwy Stg 1					5.4	-
Critical Hdwy Stg 2		2.00	(e)	2 9 03	5.4	-
Follow-up Hdwy	2.2				3.5	3.3
Pot Cap-1 Maneuver	1544			(.	720	1003
Stage 1	-	3 - 2	1		962	-
Stage 2		19	-	÷	832	-
Platoon blocked, %		۲				
Mov Cap-1 Maneuver	1544		-50	Ð	701	1003
Mov Cap-2 Maneuver					701	-
Stage 1			(*)		936	-
Stage 2	(e)	:*:	5 8 0		832	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.7		0		9	
HCM LOS	••••		v		Ă	
					~	
Minor Lane/Major Mvn	nt	EBL	EBT	WBT	WBR	SBI n1
Capacity (veh/h)		1544				948
HCM Lane V/C Ratio		0.025	-20			0.042
HCM Control Delay (s)	Ň	7.4	0		5	0.042 9
HCM Lane LOS	/	7.4 A	A	-		A
HCM 95th %tile Q(veh	۱	0.1	A	-		0.1
)	0.1	-	-		U. I

	۶	-+	\mathbf{i}	4	+	×.	1	†	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			र्भ	7		4	
Traffic Volume (veh/h)	32	457	227	44	183	7	183	1	58	4	1	13
Future Volume (veh/h)	32	457	227	44	183	7	183	1	58	4	1	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1870	1870	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	34	481	239	46	193	7	193	1	61	4	1	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	2	2	2	0	0	0	0	0	0
Cap, veh/h	135	612	293	221	775	25	504	1	278	158	47	200
Arrive On Green	0.52	0.52	0.52	0.52	0.52	0.52	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow, veh/h	36	1178	563	172	1493	49	1637	8	1610	140	274	1158
Grp Volume(v), veh/h	754	0	0	246	0	0	194	0	61	19	0	0
Grp Sat Flow(s),veh/h/ln	1778	0	0	1714	0	0	1646	0	1610	1571	0	0
Q Serve(g_s), s	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s	11.4	0.0	0.0	2.4	0.0	0.0	3.2	0.0	1.1	3.2	0.0	0.0
Prop In Lane	0.05		0.32	0.19		0.03	0.99		1.00	0.21		0.74
Lane Grp Cap(c), veh/h	1039	0	0	1022	0	0	505	0	278	405	0	0
V/C Ratio(X)	0.73	0.00	0.00	0.24	0.00	0.00	0.38	0.00	0.22	0.05	0.00	0.00
Avail Cap(c_a), veh/h	2832	0	0	2498	0	0	1576	0	1489	1581	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	6.5	0.0	0.0	4.3	0.0	0.0	12.4	0.0	11.5	11.2	0.0	0.0
Incr Delay (d2), s/veh	1.0	0.0	0.0	0.1	0.0	0.0	0.5	0.0	0.4	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.3	0.0	0.0	0.2	0.0	0.0	1.1	0.0	0.3	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	7.4	0.0	0.0	4.4	0.0	0.0	12.9	0.0	11.9	11.3	0.0	0.0
LnGrp LOS	A	Α	A	A	A	Α	В	A	B	В	A	A
Approach Vol, veh/h		754			246			255			19	
Approach Delay, s/veh		7.4			4.4			12.7			11.3	
Approach LOS		A			А			В			В	
Timer - Assigned Phs		2	_	4		6		8				
Phs Duration (G+Y+Rc), s		10.6		21.8		10.6		21.8				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+l1), s		5.2		13.4		5.2		4.4				
Green Ext Time (p_c), s		0.9		3.5		0.0		1.0				
Intersection Summary												
HCM 6th Ctrl Delay			8.0									
HCM 6th LOS			А									

Intersection						
Int Delay, s/veh	5.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ની	- îs	
Traffic Vol, veh/h	195	30	22	47	57	215
Future Vol, veh/h	195	30	22	47	57	215
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	16	None	-	None
Storage Length	0	-	7.5			
Veh in Median Storage	e,#0	3 .5 1	3.5	0	0	3 2
Grade, %	0	-	-	0	0	: •:
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	217	33	24	52	63	239
Major/Minor	Minor2	n	Major1	Ν	/lajor2	
Conflicting Flow All	283	183	302	0		0
Stage 1	183	100	502	0		U
Stage 2	100					
Critical Hdwy	6.4	6.2	4.1	-		2. 2.
Critical Hdwy Stg 1	5.4	0.2	4.1			
Critical Hdwy Stg 2	5.4 5.4					0 - 0
				-	-	
Follow-up Hdwy Pot Cap-1 Maneuver	3.5 711	3.3	2.2		NT.	27.0
•		865	1270	196		
Stage 1	853	150	180) 1810			÷ , ,2
Stage 2	929	(1)	5 4 3)	:#C		(#):
Platoon blocked, %						36 5
Mov Cap-1 Maneuver	697	865	1270	•	•	1941 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -
Mov Cap-2 Maneuver	697	1	-			-
Stage 1	837		-		9	3 .
Stage 2	929	•		-		
Approach	EB		NB		SB	
HCM Control Delay, s	12.7		2.5		0	
HCM LOS	В					
Minor Lane/Major Mvm	ł	NBL	NBT E	-Bin1	SBT	SBR
Capacity (veh/h)		1270	-	716	301	JDR -
HCM Lane V/C Ratio		0.019			-	
HCM Control Delay (s)				0.349		
HCM Control Delay (s) HCM Lane LOS		7.9	0	12.7 P		0
HOW LARE LUS		A	А	В		.≂.
HCM 95th %tile Q(veh)		0.1		1.6		

Intersection						
Int Delay, s/veh	2.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		्र	ef –		۰Y	
Traffic Vol, veh/h	38	137	65	19	24	35
Future Vol, veh/h	38	137	65	19	24	35
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-			0	
Veh in Median Storage	,# -	0	0	-	0	
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	41	149	71	21	26	38
		110		21	20	00
	Major1		Major2		Vinor2	
Conflicting Flow All	92	0	0.51	0	313	82
Stage 1	17		100	-	82	5 .
Stage 2	(),	Sec.	1000	-	231	1.00
Critical Hdwy	4.1	3 9 -0	3 .	-	6.4	6.2
Critical Hdwy Stg 1	-			-	5.4	243
Critical Hdwy Stg 2		3 2 1	1.5	-	5.4	24
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1515	÷	-	-	684	983
Stage 1				-	946	
Stage 2	(*)	(1 ,	3 # 3	-	812	(•)
Platoon blocked, %		:+:		-	•	
Mov Cap-1 Maneuver	1515			5.00	663	983
Mov Cap-2 Maneuver	1010	220			663	-
Stage 1	25			528	918	_
Stage 2	-		- 0	- 2	812	
Oldge Z	154	652			012	-
Approach	EB		WB		SB	
	1.6		0		9.8	
HCM Control Delay, s	1.0		U			
HCM LOS					А	
Minor Lane/Major Mvm	t	EBL	EBT	WBT	WBR S	
Capacity (veh/h)		1515	200	-		822
HCM Lane V/C Ratio		0.027	-	-	-	0.078
HCM Control Delay (s)		7.4	0	٠	٠	9.8
HCM Lane LOS		А	А	35	350	А
HCM 95th %tile Q(veh)		0.1	-	े हर		0.3

	۶	-	\mathbf{r}	4	-	*	1	†	1	\$	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 >			÷			र्भ	1		4	
Traffic Volume (veh/h)	32	457	288	59	183	7	219	1	67	4	1	13
Future Volume (veh/h)	32	457	288	59	183	7	219	1	67	4	1	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1870	1870	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	34	481	303	62	193	7	231	1	71	4	1	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	2	2	2	0	0	0	0	0	0
Cap, veh/h	68	527	322	141	412	14	285	1	610	58	41	123
Arrive On Green	0.49	0.49	0.49	0.49	0.49	0.49	0.38	0.38	0.38	0.38	0.38	0.38
Sat Flow, veh/h	41	1067	652	171	833	28	512	2	1610	6	110	324
Grp Volume(v), veh/h	818	0	0	262	0	0	232	0	71	19	0	0
Grp Sat Flow(s),veh/h/In	1759	0	0	1032	0	0	514	0	1610	440	0	0
Q Serve(g_s), s	17.4	0.0	0.0	0.0	0.0	0.0	1.2	0.0	2.2	0.3	0.0	0.0
Cycle Q Clear(g_c), s	34.4	0.0	0.0	6.7	0.0	0.0	29.7	0.0	2.2	29.4	0.0	0.0
Prop In Lane	0.04		0.37	0.24		0.03	1.00		1.00	0.21		0.74
Lane Grp Cap(c), veh/h	917	0	0	567	0	0	286	0	610	222	0	0
V/C Ratio(X)	0.89	0.00	0.00	0.46	0.00	0.00	0.81	0.00	0.12	0.09	0.00	0.00
Avail Cap(c_a), veh/h	1 166	0	0	757	0	0	291	0	615	228	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.7	0.0	0.0	11.7	0.0	0.0	27.7	0.0	15.9	18.4	0.0	0.0
Incr Delay (d2), s/veh	7.5	0.0	0.0	0.6	0.0	0.0	15.5	0.0	0.1	0.2	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	13.3	0.0	0.0	2.4	0.0	0.0	5.6	0.0	0.8	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.2	0.0	0.0	12.3	0.0	0.0	43.2	0.0	15.9	18.6	0.0	0.0
LnGrp LOS	С	Α	A	В	A	A	D	A	В	В	A	A
Approach Vol, veh/h		818			262			303			19	
Approach Delay, s/veh		26.2			12.3			36.8			18.6	
Approach LOS		С			В			D			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		34.9		44.2		34.9		44.2				
Change Period (Y+Rc), s		5.0		5,0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+l1), s		31.7		36,4		31.4		8.7				
Green Ext Time (p_c), s		0.0		3.2		0.0		1.2				
Intersection Summary												
HCM 6th Ctrl Delay			25.8									
HCM 6th LOS			С									

	_					
Intersection						
Int Delay, s/veh	5.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	1001	0011
Traffic Vol, veh/h	195	30	22	92	133	215
Future Vol, veh/h	195	30	22	92	133	215
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
	-					
RT Channelized	-	None	:#S	None	100	None
Storage Length	0	2 4 3	-	-	-	-
Veh in Median Storage,		٠	-	0	0	1
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90		90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	217	33	24	102	148	239
Major/Minor N	1inor2	r	Major1	٨	/lajor2	
					najuiz	0
Conflicting Flow All	418	268	387	0		0
Stage 1	268		-		-	:=:
Stage 2	150	-	57	8		۰
Critical Hdwy	6.4	6.2	4.1	(1 9 2)		
Critical Hdwy Stg 1	5.4	2 .		850	۲	
Critical Hdwy Stg 2	5.4		0.	0 9 0	3 .	(*)
Follow-up Hdwy	3.5	3.3	2.2	0 0 0	3 8 3	
Pot Cap-1 Maneuver	595	776	1183	: - :		3 4 3
Stage 1	782	-	1.	12		-
Stage 2	883			(e)		
Platoon blocked, %				-	-	
Mov Cap-1 Maneuver	582	776	1183			
Mov Cap-2 Maneuver	582			8 - 3		
Stage 1	765	::#:	-	() 4)) = :	
Stage 2	883	244	-	2.44		5
Olayo Z	000					
Approach	EB		NB		SB	
Approach						
HCM Control Delay, s	15.2		1.6		0	
HCM LOS	С					
Minor Lane/Major Mvm	t	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1183	-	602		
HCM Lane V/C Ratio		0.021	-			
HCM Control Delay (s)		8.1	0		ъ.	2.40
HCM Lane LOS		A	Ă	-	140	
HCM 95th %tile Q(veh)		0.1	-	2	-	02:
		0.1	-	2		

Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/hr	3.3 EBL 58	EBT दी	WBT			
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h			WBT			
Traffic Vol, veh/h Future Vol, veh/h	58	1		WBR	SBL	SBR
Future Vol, veh/h	58		- P		·Y	
		137	65	24	27	47
Conflicting Peds. #/hr	58	137	65	24	27	47
	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	12	-	-	-	0	1.00
Veh in Median Storag	e,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	63	149	71	26	29	51
	•••	3.0		20	20	•••
Major/Minor	Major1		Major2		Minor2	
Conflicting Flow All	97	0	5 8 2	0	359	84
Stage 1	1	1	•	-	84	•
Stage 2	-	÷.	-	-	275	
Critical Hdwy	4.1			-	6.4	6.2
Critical Hdwy Stg 1	1.00	8 .	19 4 3	-	5.4	
Critical Hdwy Stg 2		() .		-	5.4	
Follow-up Hdwy	2.2	S∰S	3 .	-	3.5	3.3
Pot Cap-1 Maneuver	1509	3 9 3	200	-	644	981
Stage 1	-	0 4 3	-	-	944	-
Stage 2	-	۲	۲	-	776	•
Platoon blocked, %						
Mov Cap-1 Maneuver	1509	3 7 2		5 7 3	614	981
Mov Cap-2 Maneuver		:e:	380		614	-
Stage 1					901	-
Stage 2	840		(¥)	8 4 0	776	-
olago 2						
Approach	EB		WB		SB	
HCM Control Delay, s			0		10	
HCM LOS	۷.۷		0		B	
					D	
				WBT	WBR	
					VVBR 3	SBLUI
Minor Lane/Major Mvr	nt	EBL	EBT			005
Minor Lane/Major Mvr Capacity (veh/h)	nt	1509	EBT -	AAD1	(.	805
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio		1509 0.042	*	-		0.1
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		1509 0.042 7.5	- - 0	-	(.	0.1 10
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	i)	1509 0.042	*	-	(.	0.1

Intersection						
Int Delay, s/veh	3.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef 👘			र्भ
Traffic Vol, veh/h	15	45	76	87	69	25
Future Vol, veh/h	15	45	76	87	69	25
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	8.00	None		None
Storage Length	0	((.)	-			
Veh in Median Storage,	# 0	:*:	0			0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	0	0	0	0	0	0
Mvmt Flow	17	50	84	97	77	28
Major/Minor M	linor1	Ν	Major1	1	Major2	
Conflicting Flow All	315	133	0	0	181	0
Stage 1	133	-				
Stage 2	182	-		-	: - 22	
Critical Hdwy	6.4	6.2			4.1	5 <u>2</u>
Critical Hdwy Stg 1	5.4	-	340		- i - i - i - i - i - i - i - i - i - i	
Critical Hdwy Stg 2	5.4	-	-		-	-
Follow-up Hdwy	3.5	3.3			2.2	
Pot Cap-1 Maneuver	682	922	-		1407	
Stage 1	898	-			1407	2
Stage 2	854	_				
Platoon blocked, %	00-	-	-		-	
Mov Cap-1 Maneuver	644	922	-	-	1407	
Mov Cap-1 Maneuver	644 644	522	-	-	1407	5
Stage 1	044 848	-	-	7	7	5
-	854 854	-	-	5		5
Stage 2	004	-	-	10	7	-
Approach					0.P	
Approach	WB		NB		SB	
HCM Control Delay, s	9.7		0		5.7	
HCM LOS	А					
Minor Lane/Major Mvmt		NBT	NBRW		SBL	SBT
Capacity (veh/h)				832	1407	7
HCM Lane V/C Ratio		.			0.054	-
HCM Control Delay (s)				9.7	7.7	0
HCM Lane LOS				Α	Α	А
HCM 25th %tile Q(veh)		-	-	0.3	0.2	~

1

	٨	-	$\mathbf{\hat{z}}$	4	+	۰.	1	Ť	1	5	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			4			र्भ	1		\$	
Traffic Volume (veh/h)	32	511	227	44	190	7	183	1	58	4	1	13
Future Volume (veh/h)	32	511	227	44	190	7	183	1	58	4	1	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1870	1870	1900	1900	1900	1900	1900	1900
Adi Flow Rate, veh/h	34	538	239	46	200	7	193	1	61	4	1	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0.00	2	2	2	0.00	0.00	0.00	0.00	0.00	0.00
Cap, veh/h	126	667	286	214	798	25	484	1	273	148	47	197
Arrive On Green	0.54	0.54	0.54	0.54	0.54	0.54	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow, veh/h	34	1226	526	170	1468	47	1642	9	1610	136	280	1163
Grp Volume(v), veh/h	811	0	020	253	0	0	194		61			
Grp Sat Flow(s), veh/h/ln	1785	0	0	1684	0		1650	0 0		19	0	0
Q Serve(g_s), s	2.7	0.0	0.0	0.0	0.0	0			1610	1579	0	0
	13.1					0.0	0.0	0.0	1.1	0.0	0.0	0.0
Cycle Q Clear(g_c), s		0.0	0.0	2.5	0.0	0.0	3.5	0.0	1.1	3.5	0.0	0.0
Prop In Lane	0.04	0	0.29	0.18	•	0.03	0.99		1.00	0.21	•	0.74
Lane Grp Cap(c), veh/h	1079	0	0	1038	0	0	486	0	273	393	0	0
V/C Ratio(X)	0.75	0.00	0.00	0.24	0.00	0.00	0.40	0.00	0.22	0.05	0.00	0.00
Avail Cap(c_a), veh/h	2645	0	0	2304	0	0	1467	0	1384	1471	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	6.6	0.0	0.0	4.2	0.0	0.0	13.5	0.0	12.5	12.2	0.0	0.0
Incr Delay (d2), s/veh	1.1	0.0	0.0	0.1	0.0	0.0	0.5	0.0	0.4	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.6	0.0	0.0	0.3	0.0	0.0	1.2	0.0	0.4	0.1	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	7.7	0.0	0.0	4.3	0.0	0.0	14.0	0.0	12.9	12.2	0.0	0.0
LnGrp LOS	A	A	Α	Α	A	A	B	Α	B	B	Α	A
Approach Vol, veh/h		811			253			255			19	
Approach Delay, s/veh		7.7			4.3			13.7			12.2	
Approach LOS		А			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		10.9		24.0		10.9		24.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+l1), s		5.5		15.1		5.5		4.5				
Green Ext Time (p_c), s		0.9		3.9		0.0		1.1				
Intersection Summary												
HCM 6th Ctrl Delay			8.3									
HCM 6th LOS			A									

	۶	-	*	4	+		•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 >			4			र्च	7		\$	
Traffic Volume (veh/h)	32	511	288	59	190	7	219	1	67	4	1	13
Future Volume (veh/h)	32	511	288	59	190	7	219	1	67	4	1	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	4000	No	4000	4070	No	4070	4000	No	1000	1000	No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1870	1870	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	34	538	303	62	200	7	231	1	71	4	1	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	2	2	2	0	0	0	0	0	0
Cap, veh/h	65	584	320	135	410	13	252	1	575	52	38	108
Arrive On Green	0.52 39	0.52	0.52	0.52 157	0.52	0.52	0.36	0.36	0.36	0.36	0.36	0.36
Sat Flow, veh/h		1116	612		783	25	466	2	1610	0	107	301
Grp Volume(v), veh/h	875	0	0	269	0	0	232	0	71	19	0	0
Grp Sat Flow(s),veh/h/ln	1767	0	0	965	0	0	468	0	1610	408	0	0
Q Serve(g_s), s	20.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0
Cycle Q Clear(g_c), s	39.1	0.0	0.0	7.0	0.0	0.0	30.0	0.0	2.5	30.0	0.0	0.0
Prop In Lane Lane Grp Cap(c), veh/h	0.04 970	0	0.35 0	0.23 558	0	0.03	1.00	0	1.00	0.21	0	0.74
V/C Ratio(X)	0.90	0 0.00	0.00	0.48	0 0.00	0 0.00	253	0	575 0.12	198 0.10	0	0
Avail Cap(c_a), veh/h	0.90 1096	0.00	0.00	0.40 652	0.00	0.00	0.92 253	0.00 0	0.12 575	198	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0 1.00	0 1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	18.8	0.00	0.00	1.00	0.00	0.00	31.2	0.00	18.1	20.6	0.00	0.00
Incr Delay (d2), s/veh	9.6	0.0	0.0	0.6	0.0	0.0	35.4	0.0	0.1	20.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
%ile BackOfQ(50%),veh/ln	15.6	0.0	0.0	2.5	0.0	0.0	7.2	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	10.0	0.0	0.0	2.0	0.0	0.0	1.2	0.0	0.5	0.2	0.0	0.0
LnGrp Delay(d),s/veh	28.4	0.0	0.0	11.8	0.0	0.0	66.6	0.0	18.2	20.8	0.0	0.0
LnGrp LOS	C	A	A	В	A	A	E	A	B	20.0 C	A	A
Approach Vol, veh/h		875			269			303			19	
Approach Delay, s/veh		28.4			11.8			55.3			20.8	
Approach LOS		С			В			E			C	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		35.0		49.0		35.0		49.0				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		30.0		50.0		30.0		50.0				
Max Q Clear Time (g_c+I1), s		32.0		41.1		32.0		9.0				
Green Ext Time (p_c), s		0.0		2.8		0.0		1.3				
Intersection Summary												
HCM 6th Ctrl Delay			30.8									
HCM 6th LOS			С									

	≯	-+	\mathbf{r}	4	+	•	•	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		۳.	4			4	
Traffic Volume (veh/h)	10	300	83	44	448	4	153	1	72	5	1	22
Future Volume (veh/h)	10	300	83	44	448	4	153	1	72	5	1	22
lnitial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1752	1752	1767	1767	1767	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	13	390	108	57	582	5	199	1	94	6	1	29
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Percent Heavy Veh, %	10	10	10	9	9	9	1	1	1	0	0	0
Cap, veh/h	126	615	166	165	750	6	525	3	324	160	41	266
Arrive On Green	0.47	0.47	0.47	0.47	0.47	0.47	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	14	1304	353	80	1592	13	1391	17	1583	115	199	1301
Grp Volume(v), veh/h	511	0	0	644	0	0	199	0	95	36	0	0
Grp Sat Flow(s),veh/h/ln	1671	0	0	1685	0	0	1391	0	1600	1616	0	0
Q Serve(g_s), s	0.0	0.0	0.0	2.7	0.0	0.0	3.4	0.0	1.5	0.0	0.0	0.0
Cycle Q Clear(g_c), s	7.1	0.0	0.0	9.7	0.0	0.0	3.9	0.0	1.5	0.5	0.0	0.0
Prop In Lane	0.03		0.21	0.09		0.01	1.00		0.99	0.17		0.81
Lane Grp Cap(c), veh/h	907	0	0	921	0	0	525	0	327	467	0	0
V/C Ratio(X)	0.56	0.00	0.00	0.70	0.00	0.00	0.38	0.00	0.29	0.08	0.00	0.00
Avail Cap(c_a), veh/h	2524	0	0	2511	0	0	1142	0	1037	1159	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	6.2	0.0	0.0	6.8	0.0	0.0	11.3	0.0	10.4	10.0	0.0	0.0
Incr Delay (d2), s/veh	0.6	0.0	0.0	1.0	0.0	0.0	0.5	0.0	0.5	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	0.0	0.0	1.2	0.0	0.0	1.0	0.0	0.4	0.2	0.0	0.0
Unsig. Movement Delay, s/veh				7.0		0.0	44 7	0.0	10.0	40.0	0.0	0.0
LnGrp Delay(d),s/veh	6.7	0.0	0.0	7.8	0.0	0.0	11.7	0.0	10.9 В	10.0 B	0.0 A	0.0
LnGrp LOS	A	A	A	A	A	Α	B	A	D	D		<u> </u>
Approach Vol, veh/h		511			644			294			36 10.0	
Approach Delay, s/veh		6.7			7.8			11.4			-	
Approach LOS		A			А	220		В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		11.3		19.5		11.3		19.5				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		20.0		45.0		20.0		45.0				
Max Q Clear Time (g_c+l1), s		5.9		9.1		2.5		11.7				
Green Ext Time (p_c), s		0.8		2.1		0.1		2.8				
Intersection Summary												
HCM 6th Ctrl Delay			8.2									
HCM 6th LOS			А									

Notes

User approved pedestrian interval to be less than phase max green.

	≯	-	>	-	+	•	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4 >			4		1	₽			4	
Traffic Volume (veh/h)	32	457	288	59	183	7	219	1	67	4	1	13
Future Volume (veh/h)	32	457	288	59	183	7	219	1	67	4	1	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1870	1870	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	34	481	303	62	193	7	231	1	71	4	1	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	2	2	2	0	0	0	0	0	0
Cap, veh/h	80	548	334	173	502	17	583	7	518	142	66	384
Arrive On Green	0.51	0.51	0.51	0.51	0.51	0.51	0.33	0.33	0.33	0.33	0.33	0.33
Sat Flow, veh/h	38	1071	652	197	981	32	1421	22	1591	217	204	1178
Grp Volume(v), veh/h	818	0	0	262	0	0	231	0	72	19	0	0
Grp Sat Flow(s),veh/h/ln	1761	0	0	1210	0	0	1421	0	1614	1599	0	0
Q Serve(g_s), s	10.9	0.0	0.0	0.0	0.0	0.0	7.4	0.0	1.9	0.0	0.0	0.0
Cycle Q Clear(g_c), s	25.9	0.0	0.0	4.9	0.0	0.0	7.9	0.0	1.9	0.5	0.0	0.0
Prop In Lane	0.04		0.37	0.24		0.03	1.00		0.99	0.21		0.74
Lane Grp Cap(c), veh/h	962	0	0	691	0	0	583	0	526	592	0	0
V/C Ratio(X)	0.85	0.00	0.00	0.38	0.00	0.00	0.40	0.00	0.14	0.03	0.00	0.00
Avail Cap(c_a), veh/h	1347	0	0	985	0	0	583	0	526	592	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	13.6	0.0	0.0	8.5	0.0	0.0	16.6	0.0	14.6	14.1	0.0	0.0
Incr Delay (d2), s/veh	3.9	0.0	0.0	0.3	0.0	0.0	2.0	0.0	0.5	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	8.2	0.0	0.0	1.5	0.0	0.0	2.7	0.0	0.7	0.2	0.0	0.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	17.5	0.0	0.0	8.9	0.0	0.0	18.6	0.0	15.2	14.2	0.0	0.0
LnGrp LOS	В	A	A	Α	Α	Α	B	Α	B	B	A	<u> </u>
Approach Vol, veh/h		818			262			303			19	
Approach Delay, s/veh		17.5			8.9			17.8			14.2	
Approach LOS		В			А			В			В	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		25.0		36.4		25.0		36.4				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		20.0		45.0		20.0		45.0				
Max Q Clear Time (g_c+l1), s		9.9		27.9		2.5		6.9				
Green Ext Time (p_c), s		0.7		3.5		0.0		1.2				
Intersection Summary												
HCM 6th Ctrl Delay			15.9									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green,

	≯	-	*	4	+	A.	1	1	1	1	Ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	Þ			4	
Traffic Volume (veh/h)	10	307	83	44	505	4	153	1	72	5	1	22
Future Volume (veh/h)	10	307	83	44	505	4	153	1	72	5	1	22
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1752	1752	1752	1767	1767	1767	1885	1885	1885	1900	1900	1900
Adj Flow Rate, veh/h	13	399	108	57	656	5	199	1	94	6	1	29
Peak Hour Factor	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77
Percent Heavy Veh, %	10	10	10	9	9	9	1	1	1	0	0	0
Cap, veh/h	115	667	177	150	814	6	496	3	316	145	41	260
Arrive On Green	0.51	0.51	0.51	0.51	0.51	0.51	0.20	0.20	0.20	0.20	0.20	- 0.20
Sat Flow, veh/h	13	1312	348	72	1602	12	1391	17	1583	110	204	1303
Grp Volume(v), veh/h	520	0	0	718	0	0	199	0	95	36	0	0
Grp Sat Flow(s), veh/h/ln	1673	0	0	1686	0	0	1391	0	1600	1617	0	0
Q Serve(g_s), s	0.0	0.0	0.0	4.5	0.0	0.0	3.8	0.0	1.7	0.0	0.0	0.0
Cycle Q Clear(g_c), s	7.5	0.0	0.0	12.2	0.0	0.0	4.4	0.0	1.7	0.6	0.0	0.0
Prop In Lane	0.02	0.0	0.21	0.08		0.01	1.00		0.99	0.17		0.81
Lane Grp Cap(c), veh/h	958	0	0	970	0	0	496	0	320	446	0	0
V/C Ratio(X)	0.54	0.00	0.00	0.74	0.00	0.00	0.40	0.00	0.30	0.08	0.00	0.00
Avail Cap(c_a), veh/h	2275	0.00	0.00	2280	0.00	0.00	1030	0	935	1046	0	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	6.0	0.0	0.0	7.0	0.0	0.0	12.6	0.0	11.6	11.2	0.0	0.0
Incr Delay (d2), s/veh	0.5	0.0	0.0	1.1	0.0	0.0	0.5	0.0	0.5	0.1	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.0	0.0	0.0	1.7	0.0	0.0	1.2	0.0	0.5	0.2	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	1.7	0.0	0.0		0.0	0.0	0.2	010	010
LnGrp Delay(d),s/veh	6.5	0.0	0.0	8.2	0.0	0.0	13.2	0.0	12.2	11.3	0.0	0.0
LnGrp LOS	A	A	A	A	A	A	В	A	В	B	A	A
Approach Vol, veh/h	7.	520			718			294			36	
Approach Delay, s/veh		6.5			8.2			12.8			11.3	
Approach LOS		A			0.2 A			B			B	
				4	Л	c		8			D	
Timer - Assigned Phs		2	_	4		6						
Phs Duration (G+Y+Rc), s		11.8		22.4		11.8		22.4				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		20.0		45.0		20.0		45.0				
Max Q Clear Time (g_c+l1), s		6.4		9.5		2.6		14.2				
Green Ext Time (p_c), s		0.8		2.1		0.1		3.2				
Intersection Summary												
HCM 6th Ctrl Delay			8.6									
HCM 6th LOS			А									
Notos												

Notes

User approved pedestrian interval to be less than phase max green.

	≯	-	\mathbf{r}	1	+	۸.	1	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽					ሻ	- î>			4	
Traffic Volume (veh/h)	32	511	288	59	190	7	219	1	67	4	1	13
Future Volume (veh/h)	32	511	288	59	190	7	219	1	67	4	1	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1900	1900	1900	1870	1870	1870	1900	1900	1900	1900	1900	1900
Adj Flow Rate, veh/h	34	538	303	62	200	7	231	1	71	4	1	14
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	2	2	2	0	0	0	0	0	0
Cap, veh/h	103	635	346	222	656	21	463	5	332	130	58	249
Arrive On Green	0.56	0.56	0.56	0.56	0.56	0.56	0.21	0.21	0.21	0.21	0.21	0.21
Sat Flow, veh/h	32	1125	613	215	1163	37	1421	22	1591	151	277	1196
Grp Volume(v), veh/h	875	0	0	269	0	0	231	0	72	19	0	0
Grp Sat Flow(s), veh/h/ln	1771	0 0	0 0	1415	0	0	1421	0	1614	1623	0	0
Q Serve(g_s), s	5.5	0.0	0.0	0.0	0.0	0.0	6.2	0.0	1.6	0.0	0.0	0.0
Cycle Q Clear(g_c), s	18.6	0.0	0.0	3.2	0.0	0.0	6.6	0.0	1.6	0.4	0.0	0.0
Prop In Lane	0.04	0.0	0.35	0.23	0.0	0.03	1.00	010	0.99	0.21	0.0	0.74
Lane Grp Cap(c), veh/h	1084	0	0.00	899	0	0	463	0	336	437	0	0
V/C Ratio(X)	0.81	0.00	0.00	0.30	0.00	0.00	0.50	0.00	0.21	0.04	0.00	0.00
Avail Cap(c_a), veh/h	1888	0.00	0.00	1499	0.00	0.00	814	0.00	734	822	0.00	0.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.00
Uniform Delay (d), s/veh	8.2	0.0	0.0	4.9	0.0	0.0	16.4	0.0	14.4	13.9	0.0	0.0
Incr Delay (d2), s/veh	1.5	0.0	0.0	0.2	0.0	0.0	0.8	0.0	0.3	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	3.5	0.0	0.0	0.6	0.0	0.0	2.0	0.0	0.5	0.0	0.0	0.0
Unsig. Movement Delay, s/veh		0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.1	0.0	0.0
•	9.7	0.0	0.0	5.1	0.0	0.0	17.2	0.0	14.7	14.0	0.0	0.0
LnGrp Delay(d),s/veh LnGrp LOS	9.7 A	0.0 A	0.0 A	J.1 A	A O.O	0.0 A	B	0.0 A	B	нч.0 В	A A	0.0 A
Approach Vol, veh/h		875			269			303			19	
		9.7			5.1			16.6			14.0	
Approach Delay, s/veh											14.0 B	
Approach LOS		А			А			В			D	
Timer - Assigned Phs		2		4		6		8				
Phs Duration (G+Y+Rc), s		14.2		29.8		14.2		29.8				
Change Period (Y+Rc), s		5.0		5.0		5.0		5.0				
Max Green Setting (Gmax), s		20.0		45.0		20.0		45.0				
Max Q Clear Time (g_c+I1), s		8.6		20.6		2.4		5.2				
Green Ext Time (p_c), s		0.7		4.2		0.0		1.3				
Intersection Summary												
HCM 6th Ctrl Delay			10.3									
HCM 6th LOS			В									
Notes												

Notes

User approved pedestrian interval to be less than phase max green.

V Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Existing - AM Peak Hour]

US Route 4/NY Route 151 Existing Peak Hour AM Peak Hour Roundabout

	Demand I	lows		Deg.	Lane	Average	Level of	95% Back o	f Queue	Lane	Lале	Cap.	Prob.
	Total veh/h	HV %	Cap. veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist ft	Config	Length	Adj. %	Block
South: US F	Route 4 NE	3											
Lane 1	67	2.0	478	0.141	100	15.3	LOS B	0.5	13.3	Short	225	0.0	NA
Lane 2 ^d	554	3.5	873	0.635	100	9.5	LOS A	4.7	120.3	Full	1130	0.0	0.0
Approach	622	3.3		0.635		10.1	LOS B	4.7	120.3				
East: NY Ro	ute 151 V	VВ											
Lane 1	285	8.2	567	0.502	100	14.0	LOS B	3.2	85.0	Full	475	0.0	0.0
Lane 2 ^d	348	5.0	648	0.537	100	11.8	LOS B	3.7	97.2	Short	170	0.0	NA
Approach	633	6.4		0.537		12.8	LOS B	3.7	97.2				
North: US R	oute 4 SB												
Lane 1	216	5.3	735	0.294	100	14.4	LOS B	1.8	46.4	Full	1600	0.0	0.0
Lane 2 ^d	442	4.7	947	0.467	100	7.7	LOS A	3.5	90.0	Full	1600	0.0	0.0
Approach	659	4.9		0.467		9.9	LOS A	3.5	90.0				
West: NY Ro	oute 151 E	В											
Lane 1 ^d	230	3.0	790	0.292	100	13.5	LOS B	1.4	35.3	Short	175	0.0	NA
Lane 2	103	6.5	561	0.184	100	8.8	LOS A	0.8	19.9	Fuli	565	0.0	0.0
Approach	334	4.1		0.292		12.1	LOS B	1.4	35.3				
Intersection	2247	4.8		0.635		11.1	LOS B	4.7	120.3				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

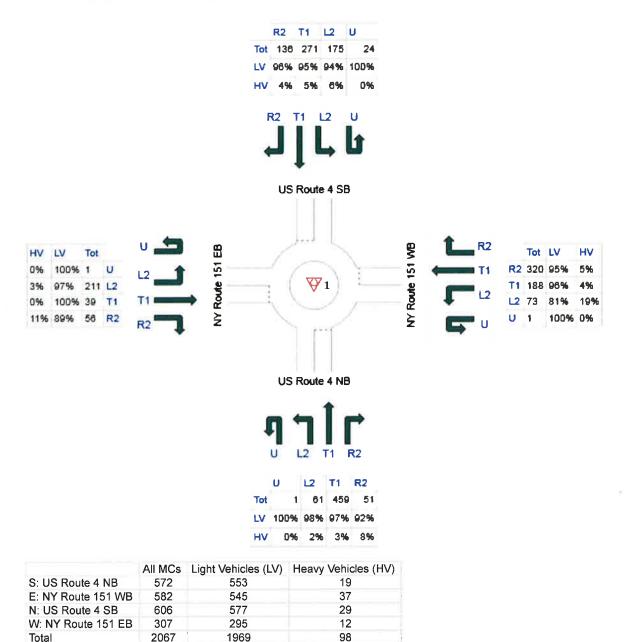
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

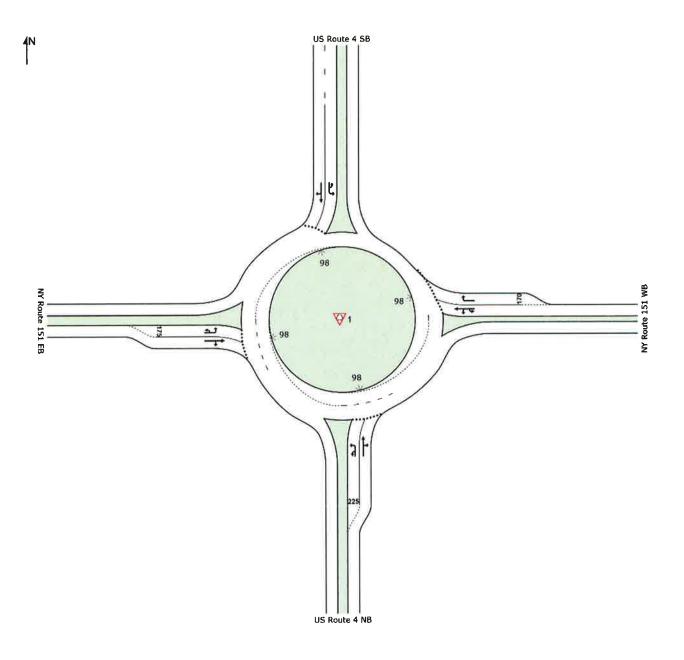
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:39 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

V Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Existing - AM Peak Hour]

US Route 4/NY Route 151 Existing Peak Hour AM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:08 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Existing - AM Peak Hour]

US Route 4/NY Route 151 Existing Peak Hour AM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:09 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build - AM Peak Hour]

US Route 4/NY Route 151 No-Build (w/o Temple) Peak Hour AM Peak Hour Roundabout

Lane Use	and Perf	orma	nce										
12.5	Demand F Total veh/h	lows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	f Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block %
South: US	Route 4 NE	3											
Lane 1	89	2.0	548	0.163	100	14.7	LOS B	0.6	15.8	Short	225	0.0	NA
Lane 2 ^d	613	3.5	944	0.650	100	9.4	LOS A	4.9	126.2	Full	1130	0.0	0.0
Approach	702	3.3		0.650		10.1	LOS B	4.9	126.2				
East: NY R	oute 151 V	/B											
Lane 1	332	8.1	550	0.603	100	16.6	LOS B	4.5	118,9	Full	475	0.0	0.0
Lane 2 ^d	399	5.0	675	0.591	100	13.0	LOS B	4.7	122.0	Short	170	0.0	NA
Approach	730	6.4		0.603		14.6	LOS B	4.7	122.0				
North: US F	Route 4 SB												
Lane 1	254	5.0	777	0.327	100	14,7	LOS B	2,1	54.9	Full	1600	0.0	0.0
Lane 2 ^d	477	4.7	995	0.480	100	7.8	LOS A	3.7	97.2	Full	1600	0.0	0.0
Approach	732	4.8		0.480		10.2	LOS B	3.7	97.2				
West: NY F	Route 151 E	в											
Lane 1 ^d	274	3.0	859	0.319	100	13.4	LOS B	1.6	40.7	Short	175	0.0	NA
Lane 2	122	6.4	604	0.201	100	8.5	LOS A	0.9	22.6	Full	565	0.0	0.0
Approach	396	4.0		0,319		11.9	LOS B	1.6	40.7				
Intersection	2560	4.7		0.650		11.7	LOS B	4.9	126.2				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

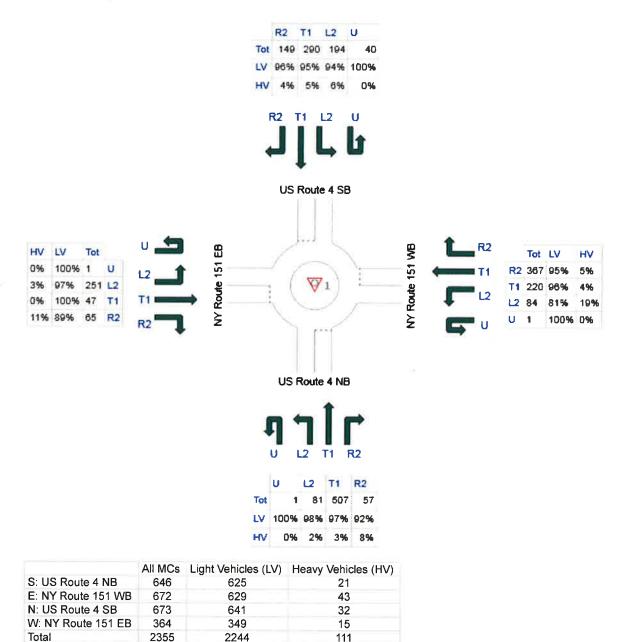
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

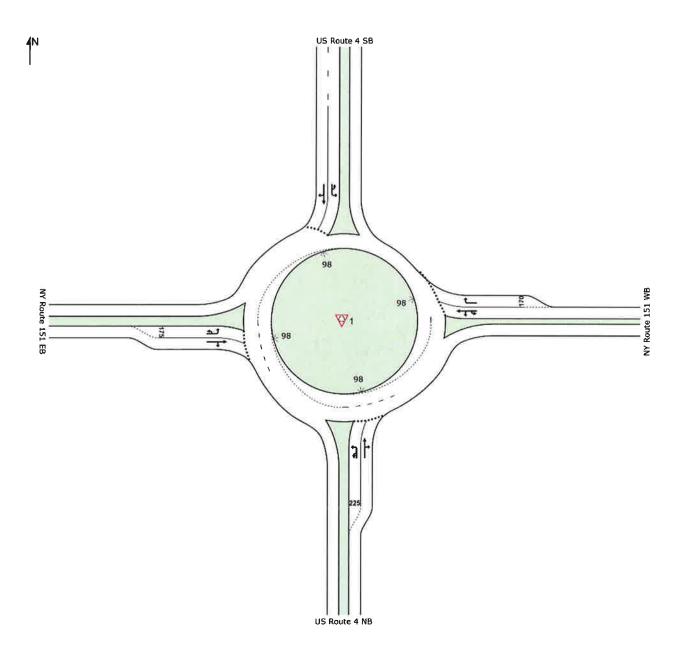
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:40 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build - AM Peak Hour]

US Route 4/NY Route 151 No-Build (w/o Temple) Peak Hour AM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:42 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build - AM Peak Hour]

US Route 4/NY Route 151 No-Build (w/o Temple) Peak Hour AM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:43 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build - AM Peak Hour]

US Route 4/NY Route 151 Build (w/o Temple) Peak Hour AM Peak Hour Roundabout

Lane Use	and Perfe	ormai	nce	TAL IN	1114	-8 Q. W	20 171	· · · ·		8 - 1 al			- * j
	Demand F Total veh/h	lows HV %	Cap. veh/h	Deg. Satn v/c	Lane Util %	Average Delay sec	Level of Service	95% Back of Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: US I	Route 4 NE	3											
Lane 1	89	2.0	533	0.167	100	14.9	LOS B	0.6	16.3	Short	225	0.0	NA
Lane 2 ^d	615	3.5	921	0.668	100	9.8	LOS A	5.2	134.1	Full	1130	0.0	0.0
Approach	704	3.3		0.668		10.5	LOS B	5.2	134.1				
East: NY R	oute 151 W	∕B											
Lane 1	339	8.0	547	0.619	100	17.0	LOS B	4.7	125.3	Full	475	0.0	0.0
Lane 2 ^d	399	5.0	668	0.597	100	13.2	LOS B	4.8	124.3	Short	170	0.0	NA
Approach	738	6.4		0.619		14.9	LOS B	4.8	125.3				
North: US F	Route 4 SB												
Lane 1	264	5.0	776	0.340	100	14.7	LOS B	2.2	57.8	Full	1600	0.0	0.0
Lane 2 ^d	477	4.7	986	0.484	100	7.9	LOS A	3.8	99.4	Full	1600	0.0	0.0
Approach	741	4.8		0.484		10.3	LOS B	3.8	99.4				
West: NY R	oute 151 E	В											
Lane 1 ^d	279	3.0	853	0.327	100	13.4	LOS B	1.6	41.9	Short	175	0.0	NA
Lane 2	184	6.2	678	0.271	100	8.2	LOS A	1.2	32,4	Full	565	0.0	0.0
Approach	463	4.3		0.327		11.3	LOS B	1.6	41.9				
Intersection	2647	4.8		0.668		11.8	LOS B	5.2	134.1				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

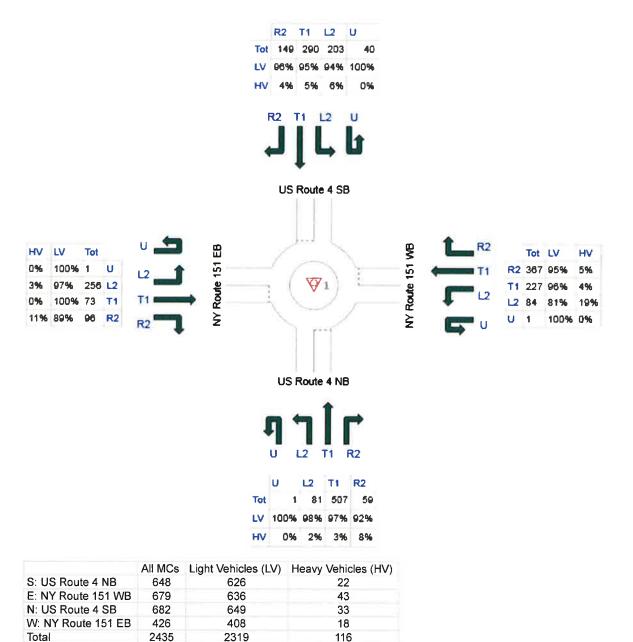
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

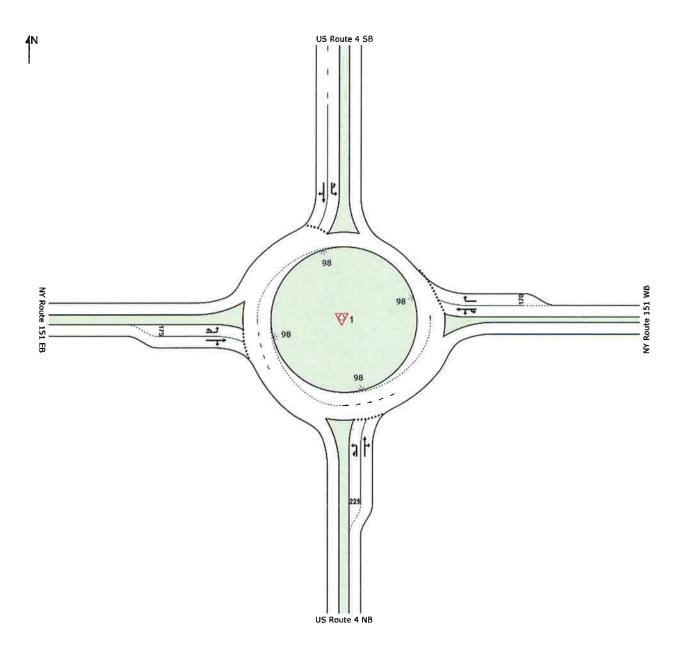
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:42 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build - AM Peak Hour]

US Route 4/NY Route 151 Build (w/o Temple) Peak Hour AM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:52 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build - AM Peak Hour]

US Route 4/NY Route 151 Build (w/o Temple) Peak Hour AM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:54 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build Sensitivity - AM Peak Hour]

US Route 4/NY Route 151 No-Build (w/ Temple) Peak Hour - 2 Lane AM Peak Hour Roundabout

Lane Use	and Perf	orma	nce			1911.		10.0	14 A			121	
	Demand F Total veh/h	Flows HV %	Cap veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back o Veh	of Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: US	Route 4 NE	3											
Lane 1 ^d	452	2.7	921	0.491	100	10.0	LOS A	3.0	75.8	Short	225	0.0	NA
Lane 2	352	3.9	794	0.444	90 ⁶	8.6	LOS A	2.4	62.5	Full	1130	0.0	0.0
Approach	804	3.2		0.491		9.4	LOS A	3.0	75.8				
East: NY R	oute 151 V	VВ											
Lane 1	351	7,9	551	0.637	100	15.7	LOS B	4.2	1 12 .7	Full	475	0.0	0.0
Lane 2 ^d	441	5.0	698	0.632	100	12.1	LOS B	4.6	118.4	Short	170	0.0	NA
Approach	792	6.3		0.637		13.7	LOS B	4.6	118.4				
North: US F	Route 4 SB												
Lane 1 ^d	436	4.9	949	0.460	100	12.2	LOS B	3.5	91.0	Full	1600	0.0	0.0
Lane 2	320	4.5	791	0.405	88 ⁶	8.7	LOS A	2.8	72.0	Full	1600	0.0	0.0
Approach	757	4.7		0.460		10.7	LOS B	3.5	91.0				
West: NY R	toute 151 E	В											
Lane 1	207	3.0	742	0.279	100	14.0	LOS B	1.4	35.7	Short	175	0.0	NA
Lane 2 ^d	224	5.0	804	0.279	100	10.3	LOS B	1.4	37.2	Full	565	0.0	0.0
Approach	432	4.0		0.279		12.1	LOS B	1.4	37.2				
Intersection	2785	4.6		0.637		11.4	LOS B	4.6	118.4				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

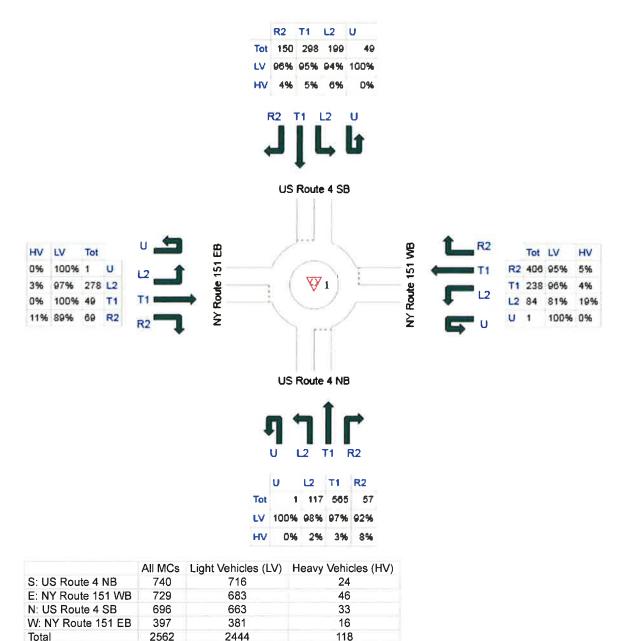
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

6 Lane under-utilisation due to downstream effects

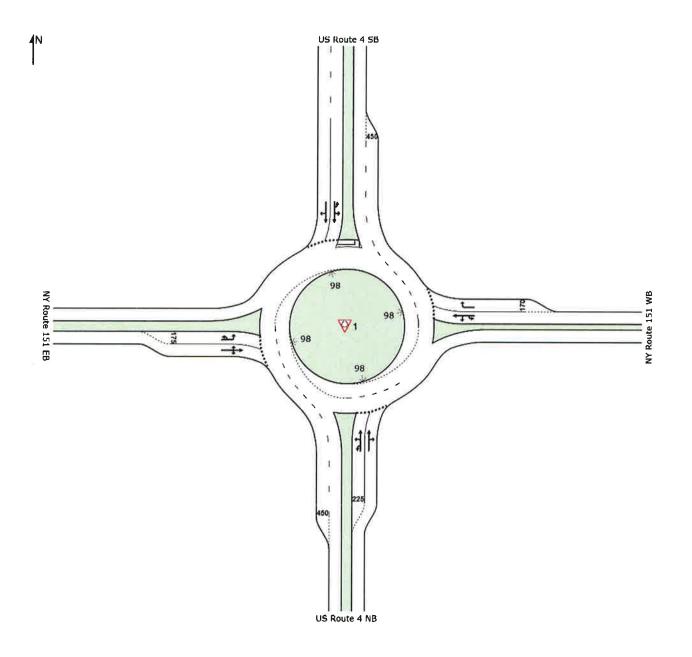
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:41 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

V Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build Sensitivity - AM Peak Hour]

US Route 4/NY Route 151 No-Build (w/ Temple) Peak Hour - 2 Lane AM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:03 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build Sensitivity - AM Peak Hour]

US Route 4/NY Route 151 No-Build (w/ Temple) Peak Hour - 2 Lane AM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:04 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build Sensitivity - AM Peak Hour]

US Route 4/NY Route 151 Build (w/ Temple) Peak Hour - 2 Lane AM Peak Hour Roundabout

	Demand F	lows		Deg.	Lane	Average	Level of	95% Back of	Queue	Lane	Lane	Cap.	Prob.
	Total veh/h	HV %	Cap veh/h	Satn v/c	Util. %	Delay sec	Service	Veh	Dist ft	Config	Length ft	Adj. %	Block %
South: US F	Route 4 NE	3											
Lane 1 ^d	455	2.7	894	0.509	100	10.3	LOS B	3.2	80.6	Short	225	0.0	NA
Lane 2	351	3.9	763	0.460	90 ⁶	9.0	LOS A	2.6	66.2	Full	1130	0.0	0.0
Approach	807	3.2		0.509		9.8	LOS A	3.2	80.6				
East: NY Ro	oute 151 V	/B											
Lane 1	359	7.8	540	0.664	100	16.7	LOS B	4.7	123.9	Full	475	0.0	0.0
Lane 2 ^d	441	5.0	682	0.647	100	12.8	LOS B	4.9	126.3	Short	170	0.0	NA
Approach	800	6.3		0.664		14.6	LOS B	4.9	126.3				
North: US R	oute 4 SB												
Lane 1 ^d	449	4,8	941	0.477	100	12.7	LOS B	3.8	98.3	Full	1600	0.0	0.0
Lane 2	328	4.5	782	0.420	88 ⁶	8.8	LOS A	2.9	75.6	Full	1600	0.0	0.0
Approach	777	4.7		0.477		11.0	LOS B	3.8	98.3				
West: NY R	oute 151 E	в											
Lane 1	240	3.0	729	0.329	100	14.2	LOS B	1.7	43.4	Short	175	0.0	NA
Lane 2 ^d	259	5.4	786	0.329	100	9.5	LOS A	1.7	45.3	Full	565	0.0	0.0
Approach	499	4.2		0.329		11.8	LOS B	1,7	45.3				
Intersection	2883	4.6		0.664		11.8	LOS B	4.9	126.3				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab), Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard.

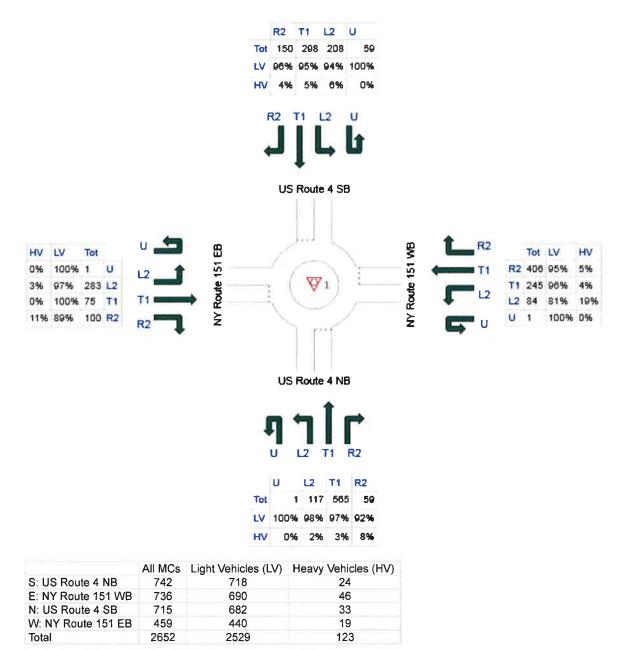
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

6 Lane under-utilisation due to downstream effects

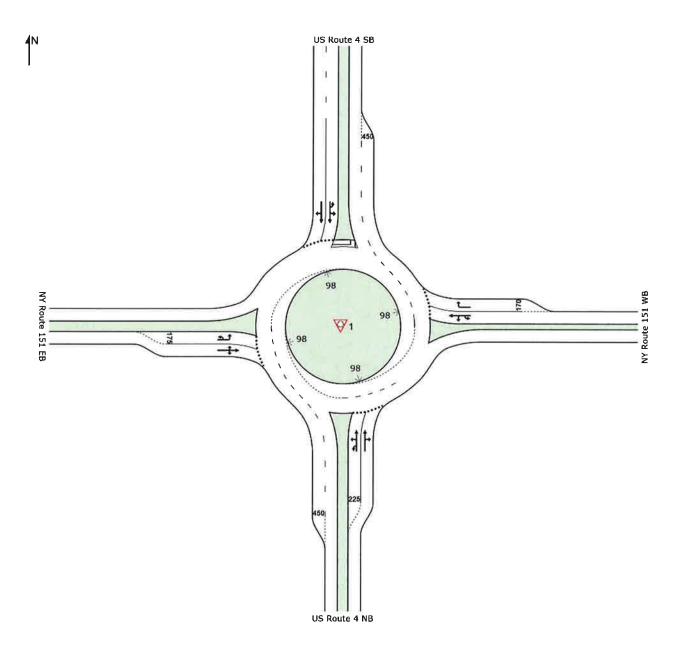
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:43 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

V Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build Sensitivity - AM Peak Hour]

US Route 4/NY Route 151 Build (w/ Temple) Peak Hour - 2 Lane AM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:18 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT V Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build Sensitivity - AM Peak Hour]

US Route 4/NY Route 151 Build (w/ Temple) Peak Hour - 2 Lane AM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:20 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Existing - PM Peak Hour]

US Route 4/NY Route 151 Existing Peak Hour PM Peak Hour Roundabout

Lane Use	and Perf	ormai	nce			1. THE	_11_2* * T		Carlos				
	Demand I Total veh/h	Flows HV %	Cap. veh/h	Deg Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	f Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: US I	Route 4 N	3							_				
Lane 1	75	0.0	369	0.204	100	17.6	LOS B	0.8	20.1	Short	225	0.0	NA
Lane 2 ^d	562	0.2	704	0.799	100	15.1	LOS B	7.8	195.5	Full	1130	0.0	0.0
Approach	638	0.2		0.799		15.4	LOS B	7.8	195.5				
East: NY R	oute 151 V	٧B											
Lane 1	199	1.0	622	0.320	100	11.8	LOS B	1.7	42.2	Full	475	0.0	0.0
Lane 2 ^d	246	1.0	679	0.362	100	9.1	LOS A	2.0	51.1	Short	170	0.0	NA
Approach	445	1.0		0.362		10.3	LOS B	2.0	51.1				
North: US F	Route 4 SB												
Lane 1	366	0.0	815	0.449	100	13.8	LOS B	3.1	77.2	Full	1600	0.0	0.0
Lane 2 ^d	935	1.2	1147	0.816	100	11.1	LOS B	13.6	343.4	Full	1600	0.0	0.0
Approach	1301	0.9		0.816		11.8	LOS B	13.6	343.4				
West: NY R	oute 151 E	В											
Lane 1	299	1.0	470	0.636	100	20.9	LOS C	4.4	110.5	Short	175	0.0	NA
Lane 2 ^d	305	1.0	513	0.595	100	13.5	LOS B	4.1	102.5	Full	565	0.0	0.0
Approach	604	1.0		0.636		17.2	LOS B	4.4	110.5				
Intersection	2988	0.8		0.816		13.5	LOS B	13.6	343.4				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab), Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

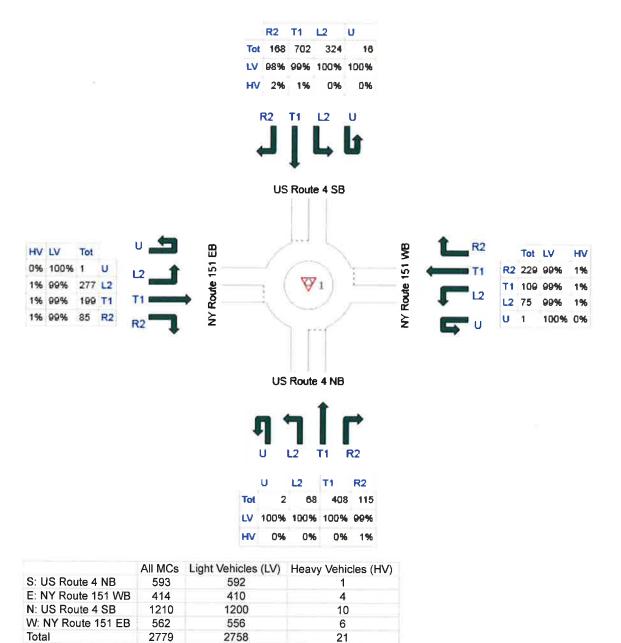
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

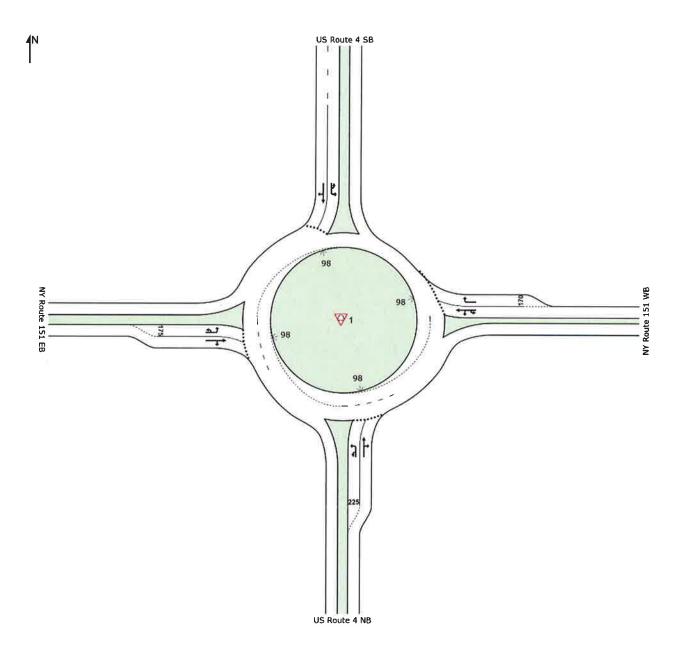
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:44 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Existing - PM Peak Hour]

US Route 4/NY Route 151 Existing Peak Hour PM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:35 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Existing - PM Peak Hour]

US Route 4/NY Route 151 Existing Peak Hour PM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:37 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build - PM Peak Hour]

US Route 4/NY Route 151 No-Build (w/o Temple) Peak Hour PM Peak Hour Roundabout

Lane Use	and Perf	orma	nce	6	a hu		16 11 2 1			R R R			
	Demand I Total veh/h	HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back o Veh	f Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob Block
South: US I	Route 4 NI	3											
Lane 1	91	0.0	418	0.219	100	16.7	LOS B	0.9	23.2	Short	225	0.0	NA
Lane 2 ^d	604	0.2	728	0.831	100	16.5	LOS B	9.0	224.6	Full	1130	0.0	0.0
Approach	696	0.2		0.831		16.6	LOS B	9,0	224.6				
East: NY Ro	oute 151 V	VB											
Lane 1	228	1.0	608	0.375	100	12.7	LOS B	2.2	54.8	Full	475	0.0	0.0
Lane 2 ^d	272	1.0	708	0.384	100	9.6	LOS A	2.4	59.6	Short	170	0.0	NA
Approach	500	1.0		0.384		11.0	LOS B	2.4	59.6				
North: US F	loute 4 SE												
Lane 1	453	0.0	908	0.498	100	13.9	LOS B	3.7	92.5	Full	1600	0.0	0.0
Lane 2 ^d	1030	1.2	1208	0.853	100	12.6	LOS B	16.3	411.7	Full	1600	0.0	0.0
Approach	1483	0.8		0.853		13.0	LOS B	16.3	411.7				
West: NY R	oute 151 E	В											
Lane 1 ^d	354	1.0	524	0.675	100	21.0	LOS C	5.3	133.0	Short	175	0.0	NA
Lane 2	347	1.0	432	0.804	100	22.0	LOS C	6.9	174.2	Full	565	0.0	0.0
Approach	701	1.0		0.804		21.5	LOS C	6.9	174.2				
Intersection	3380	0.8		0.853		15.2	LOS B	16.3	411.7				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

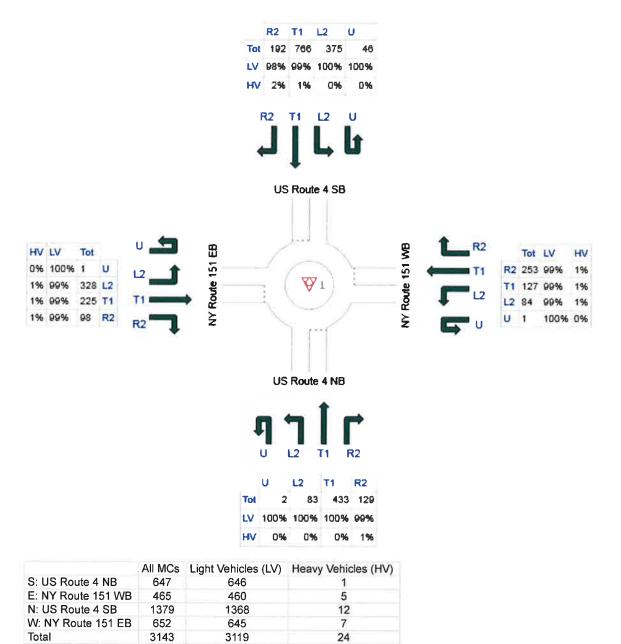
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

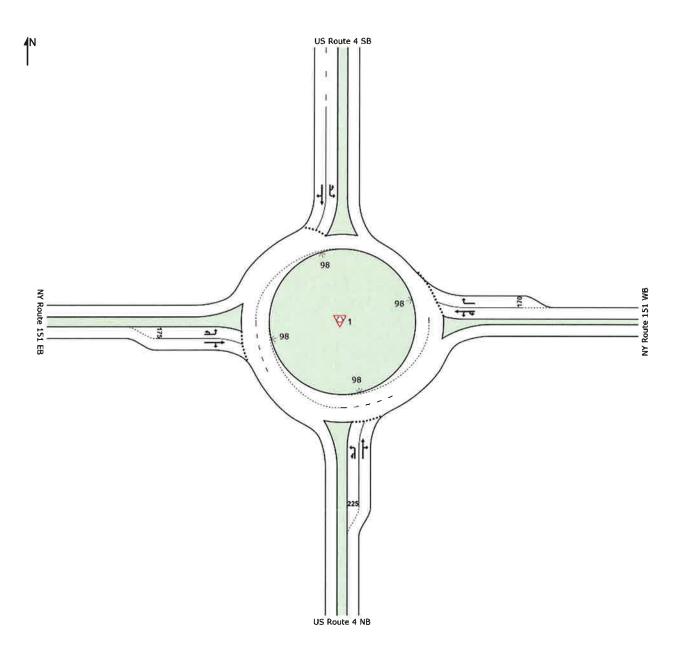
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:46 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build - PM Peak Hour]

US Route 4/NY Route 151 No-Build (w/o Temple) Peak Hour PM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:47 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build - PM Peak Hour]

US Route 4/NY Route 151 No-Build (w/o Temple) Peak Hour PM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:49 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build - PM Peak Hour]

US Route 4/NY Route 151 Build (w/o Temple) Peak Hour PM Peak Hour Roundabout

Lane Use	and Perfe	orma	nce		, a 100 - 1	1.1.1				anip ""			
	Demand F Total veh/h	HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob. Block. %
South: US	Route 4 NE	3											
Lane 1	91	0.0	402	0.227	100	17.1	LOS B	1.0	24.5	Short	225	0.0	NA
Lane 2 ^d	610	0.2	696	0.876	100	20.3	LOS C	10.8	270.7	Full	1130	0.0	0.0
Approach	701	0.2		0.876		19.9	LOS B	10.8	270.7				
East: NY Ro	oute 151 W	VB											
Lane 1	247	1.0	606	0.408	100	13.0	LOS B	2.5	62.5	Full	475	0.0	0.0
Lane 2 ^d	291	1.0	704	0.414	100	9.9	LOS A	2.7	67.0	Short	170	0.0	NA
Approach	539	1.0		0.414		11.3	LOS B	2.7	67.0				
North: US F	loute 4 SB												
Lane 1	485	0.0	907	0.535	100	14.5	LOS B	4.3	108.7	Full	1600	0.0	0.0
Lane 2 ^d	1030	1.2	1184	0.870	100	13.9	LOS B	17.8	448.5	Full	1600	0.0	0.0
Approach	1515	0.8		0.870		14.0	LOS B	17.8	448.5				
West: NY R	oute 151 E	ЕВ											
Lane 1	354	1.0	415	0.851	100	31.5	LOS C	7.9	198.3	Short	175	0.0	NA
Lane 2 ^d	375	1.0	510	0.736	100	17.1	LOS B	6.1	154.6	Full	565	0.0	0.0
Approach	729	1.0		0.851		24.1	LOS C	7.9	198.3				
Intersection	3484	0.8		0.876		16.9	LOS B	17.8	448.5				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

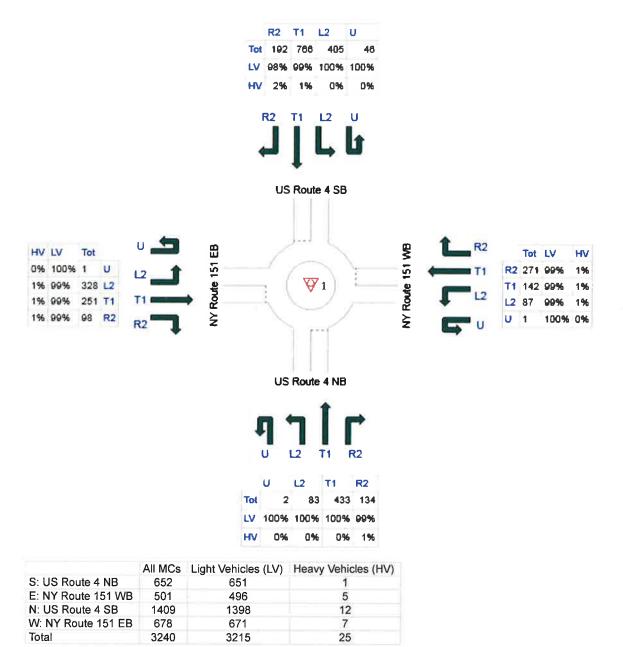
Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

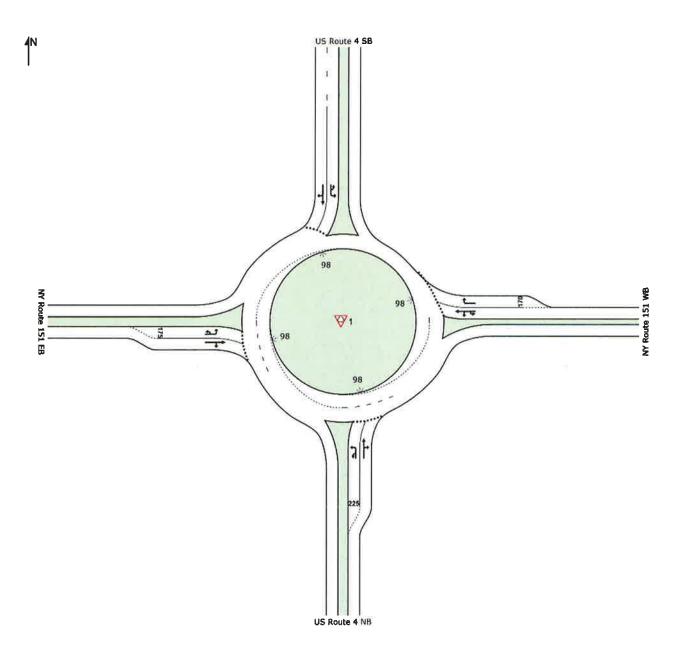
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:48 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build - PM Peak Hour]

US Route 4/NY Route 151 Build (w/o Temple) Peak Hour PM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:57 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build - PM Peak Hour]

US Route 4/NY Route 151 Build (w/o Temple) Peak Hour PM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:06:59 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build Sensitivity - PM Peak Hour]

US Route 4/NY Route 151 No-Build (w/ Temple) Peak Hour - 2 Lane PM Peak Hour Roundabout

and Perfe	ormai	nce	1929				18 K - 1 - 2 A	1.00			يوا مرو	1
Total veh/h	HV %	Cap veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob Block %
Route 4 NE	3											
411	0.0	640	0.642	100	15.0	LOS B	5.0	125.6	Short	225	0.0	NA
297	0.5	512	0.580	90 ⁶	14.0	LOS B	3.8	96.2	Full	1130	0.0	0.0
708	0.2		0.642		14,6	LOS B	5.0	125.6				
oute 151 W	/B											
232	1.0	600	0.387	100	13.0	LOS B	2.1	53.9	Full	475	0.0	0.0
275	1.0	7 1 1	0.387	100	9.7	LOS A	2.3	56.7	Short	170	0.0	NA
508	1.0		0.387		11.2	LOS B	2.3	56.7				
oute 4 SB												
973	0.4	1206	0.807	100	14.8	LOS B	13.2	330.8	Full	1600	0.0	0.0
710	1.3	999	0.710	88 ⁶	10.3	LOS B	8.7	218.9	Full	1600	0.0	0.0
1683	0.8		0.807		12.9	LOS B	13.2	330,8				
oute 151 E	В											
344	1.0	344	1.000	100	61.8	LOS E	14.2	356.6	Short	175	0.0	NA
442	1.0	442	1.000	100	52.4	LOS D	16.9	425.9	Full	565	0.0	0.0
786	1.0		1.000		56.5	LOS E	16.9	425.9				
3684	0.8		1.000		22.3	LOS C	16.9	425.9				
	Demand F Total veh/h Route 4 NE 411 297 708 Dute 151 W 232 275 508 Route 4 SB 973 710 1683 oute 151 E 344 442 786	Demand Flows Total HV % Yeh/h % Route 4 NB 411 0.0 297 0.5 0.5 708 0.2 0.2 Dute 151 WB 232 1.0 275 1.0 508 1.0 Soute 4 SB 973 0.4 710 1.3 1683 0.8 0.8 0.4 1.0 344 1.0 442 1.0 786 1.0	Total veh/h HV Cap veh/h Veh/h % veh/h Route 4 NB 411 0.0 640 297 0.5 512 708 0.2 512 708 0.2 512 oute 151 WB 232 1.0 600 275 1.0 711 508 1.0 Soute 4 SB 973 0.4 1206 710 1.3 999 1683 0.8 oute 151 EB 344 1.0 344 442 1.0 442 786 1.0 442	Demand Flows veh/h Deg. Satn veh/h Yoh Yeh/h Yoh Yeh/h 411 0.0 640 0.642 297 0.5 512 0.580 708 0.2 0.642 pointe 151 WB 232 1.0 600 0.387 232 1.0 711 0.387 508 1.0 0.387 508 1.0 711 0.387 508 0.0 0.387 Soute 4 SB 973 0.4 1206 0.807 710 1.3 999 0.710 1683 0.8 0.807 0.442 1.000 442 1.000 442 1.0 344 1.000 442 1.000	Demand Flows Total HV W Cap veh/h Deg. Satn veh/h Lane Util. % Route 4 NB 0.0 640 0.642 100 297 0.5 512 0.580 90 ⁶ 708 0.2 0.642 100 297 0.5 512 0.580 90 ⁶ 708 0.2 0.642 100 232 1.0 600 0.387 100 275 1.0 711 0.387 100 508 1.0 0.387 100 508 1.0 0.387 100 508 1.0 0.387 100 508 1.0 0.387 100 710 1.3 999 0.710 88 ⁶ 1683 0.8 0.807 100 442 1.0 344 1.000 100 442 1.0 442 1.000 100 786 1.0 1.000 1.000 100	Demand Flows Total HV W Cap veh/h Deg. Satn v/c Lane Util. Average Delay Sec Route 4 NB	Demand Flows Total HV W Cap veh/h Deg. Veh/h Lane Satu Average Util. % Level of Service Route 4 NB	Demand Flows Total HV W Cap veh/h Deg. Satu Lane Util. W Average Delay sec Level of Service 95% Back of Veh Route 4 NB	Demand Flows Total Deg. Weh/h Lane Satn Average Util. V/c Level of Service 95% Back of Queue Veh Dist ft Route 4 NB	Demand Flows Yeh/h Cap % Deg. Satn Lane Util. Average Delay % Level of Service 95% Back of Queue Veh Lane Dist Dist Yeh/h Config Config ft Route 4 NB	Demand Flows Total HV % Cap. veh/h Deg. % Lane Satu Average Util. % Level of Delay sec 95% Back of Queue Veh Lane Dist ft Lane Config Lane Length ft Route 4 NB 411 0.0 640 0.642 100 15.0 LOS B 5.0 125.6 Short 225 297 0.5 512 0.580 90 ⁶ 14.0 LOS B 3.8 96.2 Full 1130 708 0.2 0.642 100 13.0 LOS B 5.0 125.6 Short 225 232 1.0 600 0.387 100 13.0 LOS B 2.1 53.9 Full 475 275 1.0 711 0.387 100 9.7 LOS B 2.3 56.7 Short 170 508 1.0 0.387 100 14.8 LOS B 13.2 330.8 Full 1600 710 1.3 999 0.710 88 ⁶ 10	Demand Flows veh/h Deg. veh/h Lane Satu Average Util % Level of Delay sec 95% Back of Queue Veh Lane Dist ft Lane Config Lane Length Cap. Adj. ft Route 4 NB 411 0.0 640 0.642 100 15.0 LOS B 5.0 125.6 Short 225 0.0 297 0.5 512 0.580 90 ⁶ 14.0 LOS B 3.8 96.2 Full 1130 0.0 708 0.2 0.642 100 13.0 LOS B 5.0 125.6 Short 275 0.6 Veh/h 0.0 232 1.0 600 0.387 100 13.0 LOS B 2.1 53.9 Full 475 0.0 275 1.0 711 0.387 100 9.7 LOS A 2.3 56.7 Short 170 0.0 508 1.0 0.387 100 14.8 LOS B 13.2 330.8 Full 1600 0

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab), Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard,

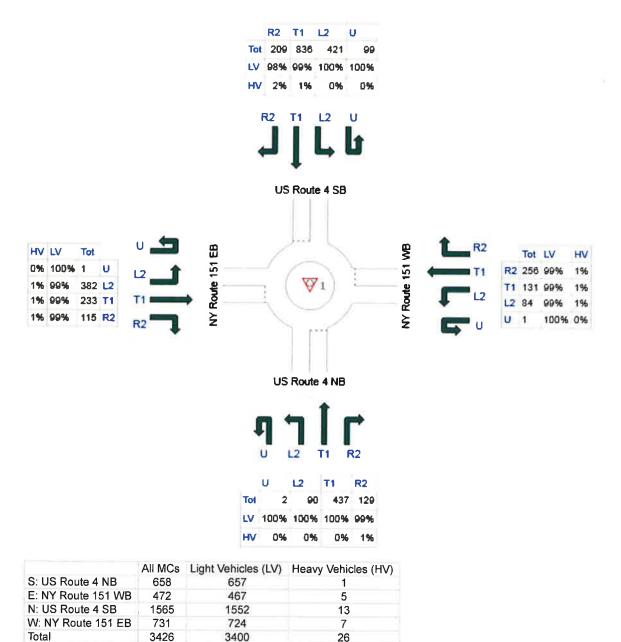
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

6 Lane under-utilisation due to downstream effects

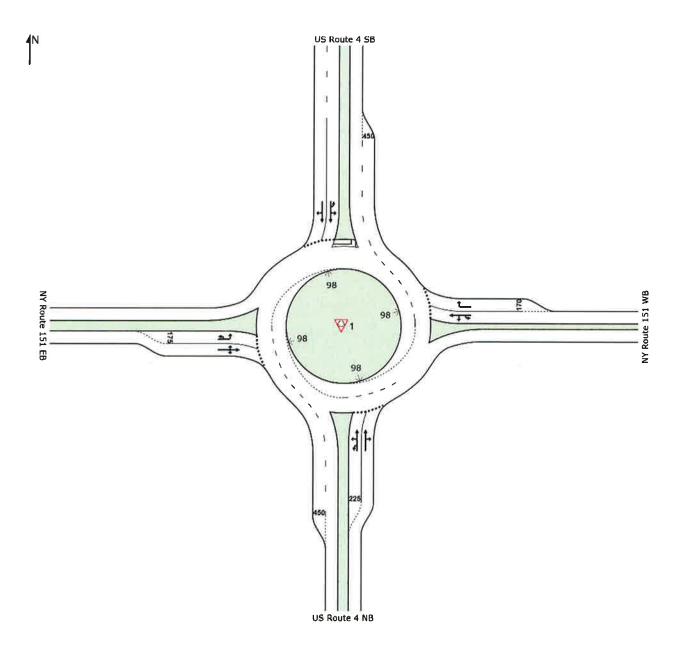
d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:47 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build Sensitivity - PM Peak Hour]

US Route 4/NY Route 151 No-Build (w/ Temple) Peak Hour - 2 Lane PM Peak Hour Roundabout


Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:13 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

SITE LAYOUT Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - No-Build Sensitivity - PM Peak Hour]

US Route 4/NY Route 151 No-Build (w/ Temple) Peak Hour - 2 Lane PM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:14 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

.

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build Sensitivity - PM Peak Hour]

US Route 4/NY Route 151 Build (w/ Temple) Peak Hour - 2 Lane PM Peak Hour Roundabout

Lane Use	and Perf	orma	nce	1,51				8 1 M - 1			100		
	Demand F Total veh/h	HV %	Cap. veh/h	Deg. Satn v/c	Lane Util. %	Average Delay sec	Level of Service	95% Back of Veh	Queue Dist ft	Lane Config	Lane Length ft	Cap. Adj. %	Prob Block. %
South: US I	Route 4 NE	3											
Lane 1 ^d	414	0.0	645	0.642	100	15.2	LOS B	5.1	127.0	Short	225	0.0	NA
Lane 2	299	0.5	516	0.580	90 ⁶	14.2	LOS B	3.9	97.0	Full	1130	0.0	0.0
Approach	713	0.2		0.642		14.8	LOS B	5.1	127.0				
East: NY Ro	oute 151 V	VВ											
Lane 1	252	1.0	613	0.411	100	13.0	LOS B	2.3	59.0	Full	475	0.0	0.0
Lane 2 ^d	295	1.0	721	0.409	100	9.7	LOS A	2.4	61.6	Short	170	0.0	NA
Approach	546	1.0		0.411		11.2	LOS B	2.4	61.6				
North: US F	loute 4 SB												
Lane 1 ^d	993	0.4	1184	0.839	100	16.4	LOS B	15.3	383.2	Full	1600	0.0	0.0
Lane 2	722	1.3	977	0.738	88 ⁶	11.2	LOS B	9.7	244.4	Full	1600	0.0	0.0
Approach	1715	0.8		0.839		14.3	LOS B	15.3	383.2				
West: NY R	oute 151 E	В											
Lane 1	355	1.0	321	1.107	100	94.6	LOS F	21.8	549.7	Short	175	0.0	NA
Lane 2 ^d	459	1.0	415	1.107	100	85.5	LOS F	26.9	676.7	Full	565	0.0	10.6
Approach	814	1.0		1.107		89.5	LOS F	26.9	676.7				
Intersection	3788	0.8		1.107		30.1	LOS C	26.9	676.7				

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab), Roundabout LOS Method: Same as Signalised Intersections.

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

Roundabout Capacity Model: SIDRA Standard,

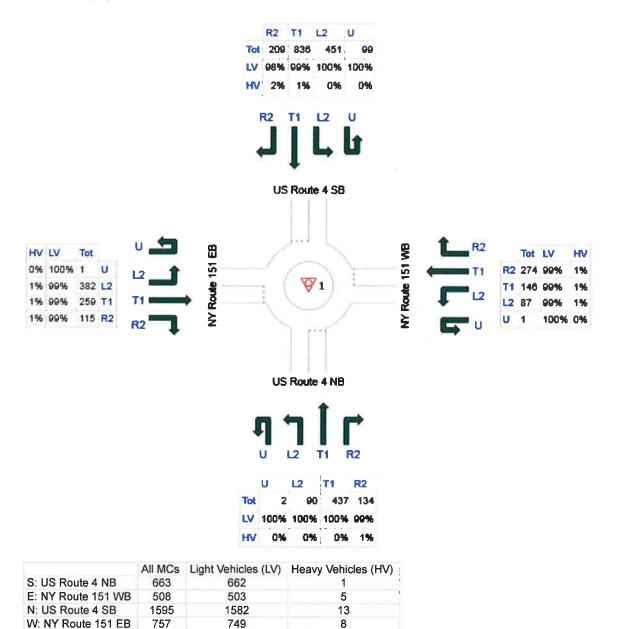
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

6 Lane under-utilisation due to downstream effects

d Dominant lane on roundabout approach


SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Processed: Thursday, May 10, 2018 4:05:49 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

Vehicles and pedestrians per 60 minutes

V Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build Sensitivity - PM Peak Hour]

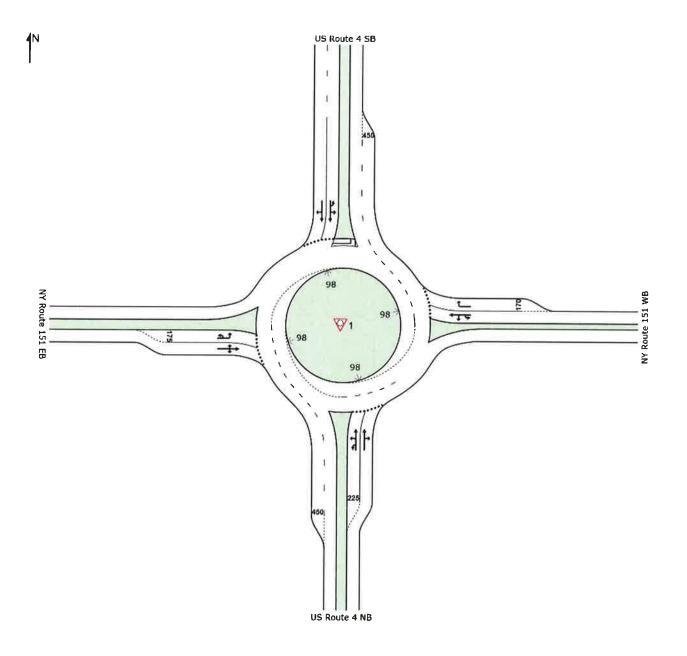
US Route 4/NY Route 151 Build (w/ Temple) Peak Hour - 2 Lane PM Peak Hour Roundabout

Volume Display Method: Total and %

SIDRA INTERSECTION 7.0 Copyright © 2000-2017 Akcelik and Associates Pty Ltd sidrasolutions.com
Organisation: CREIGHTON MANNING ENGINEERING Created: Thursday, May 10, 2018 4:07:23 PM
Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7

27

3496


3523

Total

SITE LAYOUT

Site: 1 [Red Mill Rd/Luther Rd/Troy Rd (Rt4) - Build Sensitivity - PM Peak Hour]

US Route 4/NY Route 151 Build (w/ Temple) Peak Hour - 2 Lane PM Peak Hour Roundabout

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: CREIGHTON MANNING ENGINEERING | Created: Thursday, May 10, 2018 4:07:25 PM Project: N:\Projects\2015\115-030 Covered Bridge Village\comps\traffic\Sidra\RT4RT151.sip7