
STORMWATER POLLUTION PREVENTION PLAN

<u>LOCATION</u> Carver Court Subdivision Upper Mannix Road Town of East Greenbush State of New York

PREPARED FOR CLDZ LLC 494 Western Turnpike Altamont, NY 12009

> Date Prepared May 26, 2021

Brett L. Steenburgh, P.E. PLLC 2832 Rosendale Road Niskayuna, NY 12309 (518) 365-0675 Civil • environmental • structural Engineering

TABLE OF CONTENTS

	SECTI	ON	PAGE
1.0	Projec	ct Description	1
	1.1	Nature of Construction	2
	1.2	Intended Sequence of Disturbance	3
	1.3	Area of Disturbance	4
	1.4	Site Location Map	4
2.0	Storm	Water Management Objectives	5
3.0	Post C	Construction Conditions	11
	3.1	Site Improvements and Environment	11
	3.2	Maintenance	11
	3.3	Winter Maintenance	13
	3.4	Post Construction Inspections	13
4.0	Contro	ls	14
	4.1	Erosion and Sediment Controls	14
	4.2	Erosion and Sediment Controls – Structural Practices	14
	4.3	Other Controls	15
	4.4	Approved Local and Regional Plans	15
5.0	Maint	tenance	16
6.0	Inspe	ctions	17
	6.1	Required Inspections	17
	6.2	Inspection Reports	17
	6.3	Revisions to the SWPPP	18
7.0	Non S	torm Water Discharges	19
8.0	Winte	er Shut Down Plan	20
9.0	Contr	actors Certification	21
10.0	Owne	ers Certification	23
11.0	Engin	eers Certification	24

Appendices

Appendix A – Site Location Map Appendix B – Erosion Control Plan Appendix C – Drainage Calculations Appendix D - Soils Mapping Appendix E – GI Worksheets Appendix F – NOI Appendix G – NOT Appendix H – MS4 Authorization Form Appendix I – GP-0-20-001

1.0 **PROJECT DESCRIPTION**

Carver Court Subdivision is a 91+/- acre cluster subdivision located in the Town of East Greenbush, Rensselaer County. The property has frontage on Upper Mannix Road and Thompson Hill Road. The parcel is located within the R-B Zone and is owned by CLDZ Development LLC.

It is proposed to develop the parcel as cluster subdivision with smaller lots, larger open space and the same allowable density as a traditional subdivision. This allows for the minimized land disturbance on the parcel. A traditional subdivision has been demonstrated to show that there can be 110 residential building lots developed on the parcel under the current zoning requirements. It is proposed to develop 110 residential units which will consist of estate building lots, cottage building lots and duplex town homes. Through utilizing the cluster development provision it is possible to leave 42.61 Acres or 47% of the parcel as open space.

The proposed lots will be developed on 6,048 L.F. of new town roadways. All primary access will be off of Upper Mannix Road with emergency access provided to Thompson Hill Road. Additional connection points have been stubbed for connections to the parcels to the north and west of the development.

Water service to the parcel will be accessed off of Thompson Hill Road. An 8" PVC watermain will be looped through the parcel and terminate at Upper Mannix Road.

A low pressure sanitary sewer system has been designed the convey sanitary effluent from the proposed residences to the existing gravity sewer main on Thompson Hill Road. The low pressure sanitary sewer will consist of individual privately owned grinder pumps for the cottage and estate lots and an HOA pump for each duplex building.

Under existing conditions, storm water on the site flows to three different offsite locations. However, two of the offsite locations flow into the same wetland complex off the parcel to the south. These two analysis point are known as analysis points A and B. The third analysis point flows off the parcel to the east and is limited to only the northeast corner of the subject parcel. The balance of the parcel flows towards either A or B.

1.1 NATURE OF CONSTRUCTION

The project will consist of the disturbance 40 acres and stabilizations of approximately 40 acres of land. The disturbance activities will include the clearing and grubbing of vegetation within the area of the new buildings, roads and open spaces.

1.2 INTENDED SEQUENCE OF DISTURBANCE

It is intended to develop the site in three phases. The following is the intended sequence of disturbance for the construction:

Phase 1

Phase 1 will involve the construction of Road 1 from Station 0+00 to 10+00 and the entire construction of Road 2 as well as all necessary utilities and the utility connections to Thompson Hill Road. The houses will be constructed along the roadway as sales permit.

- 1. File NOI with the NYSDEC
- 2. Installation of all silt fences. (Anticipated Start Date 3-1-21)
- 3. Install stabilized construction off the terminus off Upper Mannix Road
- 4. Clear and grub vegetation in the area of the proposed attenuation basins. (2 Acres)
- 5. Stabilize attenuation basins. (2 Acres)
- 6. Clear and grub Road 1 to station 10+00 and Road 2 (5 Acres)
- 7. Install utilities within the Road ROW.
- 8. Stabilize road ROW with subbase and mulch outside of the pavement limits. (5 Acres)
- 9. Install utilities to Thompson Hill Road (1 Acre)
- 10. Stabilize utility cooridors.
- 11. Pave Roads
- 12. Install bio-retention basins and dry swales.
- 13. Clear and grub individual lots Construct Buildings and driveways (5.0 Acres)
- 14. Landscape areas around buildings and stabilize. (5.0 Acres)
- 15. Remove silt fence upon 85% vegetative cover. (Anticipated Completion 6-30-22)

Phase 2

Phase 2 will involve the construction of the remainder of Road 1 and Road 3 as well as all necessary utilities. The houses will be constructed along the roadways as sales permit.

- 1. Installation of all silt fences. (Anticipated Start Date 6-30-22)
- 2. Install stabilized construction off the terminus off Road 1
- 3. Clear and grub vegetation in the area of the proposed attenuation basins. (2 Acres)
- 4. Stabilize attenuation basins. (2 Acres)
- 5. Clear and grub Road 1 and Road 3 (4 Acres)
- 6. Install utilities within the Road ROW.
- 7. Stabilize road ROW with subbase and mulch outside of the pavement limits. (4 Acres)
- 8. Pave Roads
- 9. Install bio-retention basins and dry swales.
- 10. Clear and grub individual lots Construct Buildings and driveways in 5 acre areas stabilizing if necessary to maintain a 5 acre maximum.
- 11. Landscape areas around buildings and stabilize. (5.0 Acres)

12. Remove silt fence upon 85% vegetative cover. (Anticipated Completion 7-30-23)

Phase 3

Phase 3 will involve the construction of Roads 4 and 5

- 1. Installation of all silt fences. (Anticipated Start Date 7-30-23)
- 2. Install stabilized construction off the at the intersection of Road 4 and Road 1
- 3. Clear and grub vegetation in the area of the proposed attenuation basin. (1 Acres)
- 4. Stabilize attenuation basins. (4 Acres)
- 5. Clear and grub Road 1 and Road 3 (2 Acres)
- 6. Install utilities within the Road ROW.
- 7. Stabilize road ROW with subbase and mulch outside of the pavement limits. (2 Acres)
- 8. Pave Roads
- 9. Install bio-retention basins and dry swales.
- 10. Clear and grub individual lots Construct Buildings and driveways in 5 acre areas stabilizing if necessary to maintain a 5 acre maximum.
- 11. Landscape areas around buildings and stabilize. (5.0 Acres)
- 12. Remove silt fence upon 85% vegetative cover. (Anticipated Completion 9-30-24)

If weather prevents the application of permanent stabilization of any open areas as described above, the soil shall be stabilized through the application of mulch and or wood chips until such time that seeding may occur. The mulch/wood chips shall be applied in accordance with Section 3 of the New York State Standards and Specifications for Erosion and Sediment Control.

1.3 AREA OF DISTURBANCE

The project will consist of the disturbance 40 acres and stabilization of approximately 40 acres of land. This project also requires compliance the NYSEC GP-0-20-001. Under no circumstances shall more the 5.0 Acres be disturbed at any time without the necessary waiver.

1.4 SITE LOCATION MAP

Refer to Appendix A of this report "Site Location Map"

2.0 STORMWATER MANAGEMENT OBJECTIVES

For drainage analysis of this project, both hydrology and hydraulics was accomplished using the HydroCAD computer modeling system. This computer program uses SCS TR-20 and Tr-55 models to determine runoff from the site as a result of a storm event and calculate culvert sizes in storm sewer systems. Site information is input into HydroCAD through a series of nodes, which can be subcatchments, reaches, ponds, or links. A subcatchment is a drainage area within the site. It can represent the drainage into a catch basin, culvert, stream, or detention basin. Area, length, slope, and CN values are input into subcatchment descriptions. A reach is used to model storm water transport throughout a site. A reach can represent a stream, drainage ditch, or a culvert. Channel geometry, pipe size, slope, Manning's n, and base flow are input into reach descriptions. Ponds are used to model areas of storage within a site. A pond can represent a detention basin, wetland, or any other situation where standing water may be present. Pond area at different elevations, primary outflow structure, and secondary outflow structure are input into pond descriptions. A link is used to incorporate runoff information from other HydroCAD models.

The proposed storm water management system has been designed to meet the New York State Stormwater Design Manual (NYSSDM) August 2015 edition. This version of the NYSSDM requires runoff reduction volume as well as encouraging green infrastructure techniques. Planners and designers must address a five step approach to site planning and SMP selection. The following is the five step process and applicable design considerations for this project.

- 1. Site planning to preserve natural features and reduce impervious cover.
 - This site has been designed to minimize the impervious cover to the maximum extent practical.
- 2. Calculation of the water quality volume for the site
 - The water quality volume for the site has been calculated and can be found in Appendix E of this document.
- 3. Incorporation of green infrastructure techniques and standard SMP's with Runoff Reduction Volume (RRv) capacity.
 - The following Green Infrastructure Techniques have been incorporated in the stormwater management design.
 Table 3.1 Green Infrastructure Planning
 - Preservation of Undisturbed Areas The limits of clearing have been maximized to the maximum extent practical given the required grading and infrastructure on the site. The proposed development has been limited to a small portion of the upland area available.

- Soil Restoration Soil restoration will be applied as require in Table 5.3 of the NYSSDM.
- Roadway Reduction The road widths have been minimized to the maximum extent practical.
- Sidewalk Reduction Sidewalks have been eliminated from the design
- Reduction of Clearing and Grading The limits of clearing has been maximized to the maximum extent practical given the required grading and infrastructure on the site.
- Building Footprint Reduction The buildings footprints have been reduced to the maximum extent practical.
- Locating Development in Less Sensitive Areas The proposed development has been located away from the wetland areas and flood plains with no impacts on either.
- Preservation of Buffers Natural buffers around the wetland areas have been preserved.
- Open space design The subdivision has been designed as a cluster subdivision which is the basis for open space design.
- Driveway Reduction The driveways lengths have been reduced to the maximum extent practical.
- The following Green infrastructure techniques in Table 3.1 have not been applied for the flowing reasons:
 - Parking reduction There are no off street parking spaces other than driveway spaces to reduce.
 - Cul-de-sac Reduction Cul-de-sacs are a requirement by the Town.
- Table 3.2 Green Infrastructure Techniques Acceptable for RRv.
 - Sheet flow Sheet flow has been utilized as much as possible
 - Disconnection of rooftop runoff The majority roofs on the site will shed onto the landscaped areas and flow into the storm water management system
 - Conservation of Natural Areas Approximately 43 Acres of the 92 Acres will be reserved as green space with much of it un-disturbed entirely. This provides conservation of wetlands, stream channels and flood plains.
 - Vegetated or open swale Dry Swales have been incorporated throughout the site at key locations.
- The following Green infrastructure techniques in Table 3.2 have not been applied for the flowing reasons:
 - Stream day lighting for re-development projects- This is not considered a re-development project furthermore, there are no streams on or adjacent to the site.

- Green Roofs Green roofs are cost prohibitive for this type of construction.
- Storm water planter Storm water planters are not proposed; however, it is intended to utilize bio-retention basins
- Rain tank or cistern The use of these devices would be cost prohibitive with respect to the project.
- Tree Plantings or Tree Box- The proposed landscaping plan includes deciduous and conifer tree plantings throughout the site.
- 4. Use of standard SMP's where applicable to treat the port of water quality volume not addressed by green infrastructure techniques and standard SMP's with RRv capacity.
 - It is proposed to utilize bio-retention basins and dry swales to treat 100% of the WQv for each drainage area.
- 5. Design of volume and peak rate of control practices where required.
 - Through a combination of the dry swales, the bio-retention basins and a dry attenuation basin at one drainage area, the peak rate of runoff is controlled for each analysis point as well as overall from the parcel.

2.1 Existing Conditions

1. Soils

According to the "Soil Survey of Rensselaer County", Soils found within the area of analysis are as follows:

Soil Type	Abbreviation	Description	Soil Group
Alden	An	Silt Loa,	C/D
Bernarston	Ве	Gravelly Silt	C/D
		Loam	
Madalin	Mb	Silt Loam	C/D
Natchaug	Nt	muck	A/D
Raynham	Ra	Silt Loam	C/D

Due to the depth to bedrock and wetlands, the lower hydrologic group was utilized for each of the soils with dual soil groups for both pre-development and post-development conditions.

As stated above the proposed development has been separated into three different analysis points. While three of the analysis points ultimately convey storm water to the headwaters of Becker Brook, each analysis point has been analyzed as a standalone discharge point for both water quantity and quality analysis.

Analysis Point A – Is located at the southeasterly portion of the parcel. The majority of the onsite wetlands drain to this location including those analyzed in Analysis Point B which flows off site before coming back onto the subject parcel.

Analysis Point B – Is located slightly north of Analysis Point A on the subject parcel property line. It is located within a wetland complex that drains off site before coming back onto the subject parcel.

Analysis Point C - Is located near the easterly property boundary on the northern most portion of the subject parcel. A portion of the stormwater from the ridge east flows to this analysis point.

2.2 Water Quantity Analysis

Analysis Point A

Analysis point A will receive storm water from the first 1500 l.f. of Road 1 as well as all of Road 2. Stormwater discharging to this location will be treated and attenuated via combination of dry swales, a bio-retention basin and two attenuation basins. This analysis point will also receive stormwater from a large quantity of undeveloped area that drains into the wetlands.

Analysis Point B

Analysis point B will receive storm water from the remainder of Road 1 and the majority of Road 3, Road 4 and Road 5. As stated this analysis point is within a wetland complex that flows off site before flowing back on site and ultimately to analysis point A. Stormwater discharging to this location will be treated and attenuated via combination of dry swales and two attenuation basins. This analysis point will also receive stormwater from a large quantity of undeveloped area that drains into the wetlands.

Analysis Point C

Analysis point C will receive storm water from the cul-de-sacs on Roads 3 and 4. Stormwater discharging to this location will be treated and attenuated via combination of dry swales, a bio-retention basin and two attenuation basins. This analysis point will also receive stormwater from undeveloped areas that drain towards this analysis point Below is a table showing a comparison of the pre-development and post development runoff rates for each analysis point for the 10 year and 100 year storm events. The Cornell Extreme Storm Values were utilized for this location and were found to be 3.85 Inches for the 10 year storm and 6.6 Inches for the 100 Year Storm.

	10 Year Storm	3.6 ln.		100 Year Storn	n 5.98 ln.	
Analysis Point	Existing (cfs)	Proposed (cfs)	% Red.	Existing (cfs)	Proposed (cfs)	% Red.
А	45.73	42.01	0%	105.03	104.77	4.7%
В	34.18	27.69	4.4%	78.65	67.94	6.5%
С	14.47	9.13	17.2%	33.25	25.83	12.8%

It can be seen that for all storm events, the peak rate of runoff to the analysis point has been reduced. The complete drainage calculations can be found in Appendix C of this document.

2.2 Water Quality Analysis

The required water quality volume and runoff reduction volume for the proposed development are being provided by the implementation various standard storm water management practices. The NYSDEC GI Worksheets can be found in Appendix E of this document. In summary the following was required and provided.

Below is a summary of what is required and provided for each analysis point:

Analysis Point A RRv. Required = 0.075 Acre-ft WQv Required = 0.394 Acre-ft RRv Provided = 0.084 Acre-ft WQv Provided = 0.394 Acre-ft Analysis Point B RRv. Required = 0.078 Acre-ft WQv Required = 0.419 Acre-ft RRv Provided = 0.095 Acre-ft WQv Provided = 0.419 Acre-ft Analysis Point C RRv. Required = 0.037 Acre-ft WQv Required = 0.192 Acre-ft

RRv Provided = 0.047 Acre-ft WQv Provided = 0.192 Acre-ft

Total Site Requirements RRv. Required = 0.19 Ac-ft< RRv Provided = 0.226 Ac-ft WQv Required = 1.005 Ac-ft = WQv Provided = 1.005 Ac-ft

3.0 Post Construction Conditions

3.1 Maintenance Bioretention Area, Dry Swale and Pretreatment Filter Strips

3.1.1 Inspections

The Bioretention should be inspected monthly. The bioretention areas should also be mulched annually. The filter strips should be inspected after major storm events to ensure outlet remains clear. Items to check for include (but are not limited to):

- Washing away of mulch
- Clogging of french drain
- Health of the vegetation
- Sediment build up in the bottom of the swales
- Ponding within the swales
- Cracking, erosion or seepage of the side slopes
- Evidence of clogging at inlets or outlets
- Rill or gully erosion
- Brush, shrub or tree growth on embankments.
- Lack of vigor and density of the grass turf on the embankments.

The Dry Swale shall also be inspected monthly. The inspection should identify any erosion, ponding or sediment deposition.

3.1.2 Mowing

The side slopes of the embankments of the swale should be mowed at least six times a year and resultant yard wastes should be collected and disposed of offsite.

3.1.3 Debris and Litter Control

Removal of debris and litter should be accomplished during mowing operations. Inlet and outlet structures should be cleared of all debris and litter.

3.1.4 Structural Repairs and Replacement

Components of the bioretention area or swale, which require repair or replacement, should be addressed immediately following identification.

3.2 Sediment Removal

Cleanout frequency of swales is dependent upon volume of inflow and sediment load.

When sediment removal is required, the original grades depicted on the project drawings should be reestablished by a qualified contractor.

Dry Swales

If ponding or sediment deposition is noted in the dry swale, the sediment and or soil shall be removed. If the planting soil is removed due to ponding, it shall be replaced with new planting soil and stabilized immediately.

Forbays and attenuation pond

The forbay to the ponds shall be cleaned out whenever 50% of the forbay capacity is reached on the sediment marker. The pond itself shall be maintained to allow free flow into the pond and through the outlet. Invasive vegetation shall be removed and the aquatic bench shall be maintained. The pond shall be reviewed annually to determine if dredging is necessary.

3.2.1 Maintenance of Construction Litter, Chemicals and Debris

The site shall be reviewed daily by the construction manager to verify that all construction litter and debris are properly contained on site. This includes but not limited to trash and building materials. It shall be contained in such a manner to prevent migration off site or into the storm water facilities on and off site.

Construction materials shall be kept in one location in a neat orderly fashion. Crusher run will should typically be brought onto site and graded by the individual truckload.

There shall be no chemicals or debris stored on the site. Construction materials shall be limited to crushed stone, stabilization fabric and storm sewer pipe and structures. A spill cleanup kit shall be on site at all times to prevent any spillage from migrating into the on or off site storm water conveyance systems.

3.2.2 Soil Restoration

Since the soils on the site are classified as Hydraulic Soil Group C and D soils, soil restoration is not required on the parcel.

3.3 Winter Maintenance

To prevent impacts to storm water management facilities, the following winter maintenance limitations, restrictions or requirements are recommended:

• Remove snow and ice from inlet structures, basin inlet and outlet structures and away from culvert end sections.

- Snow removed from paved areas should not be piled at the inlets/outlets of the storm water management basin.
- Use of deicing materials should be limited to sand and "environmentally friendly" chemical products. Use of salt mixtures should be kept to a minimum.
- Sand used for deicing should be clean, course material free of fines, silt and clay.
- Materials used for deicing should be removed during the early spring by sweeping and/or vacuuming.

3.4 Post Construction Inspections

The proposed storm water management practice will be maintained by the owners of Heritage Hills. A deed restriction shall be implemented to assure that the SMP's are maintained in accordance with the O & M Manual.

3.5 Conservation Area Management

The area noted on the plan as Open Space/Natural Buffer shall be maintained as such. There shall be no cutting of trees unless the tree is deemed hazardous. The understory shall be allowed to develop naturally with minimal clearing or trimming.

4.0 CONTROLS

4.1 Erosion and Sediment Control

The operator shall initiate stabilization measures as soon as practicable in portions of the site where construction activities have temporarily or permanently ceased, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently been ceased. This requirement does not apply to the following:

- Where the initiation of stabilization measures by the 14th day after construction activity temporarily or permanently ceased is precluded by snow cover or frozen ground conditions, stabilization measures shall be initiated as soon as practicable.
- Where construction activity on a portion of the site is temporarily ceased, and earth-disturbing activities will be resumed within 7 days, temporary stabilization measures need not be initiated on that portion of the site.

4.2 Erosion and Sediment Controls – Structural Practices

The site will be the most susceptible to erosion and sediment problems during the construction phase of the project. This can result in sedimentation in the nearby streams, rivers and wetlands.

Silt fencing – Silt fencing shall be placed as shown on the plan and as deemed necessary by the qualified inspector and/or trained construction manager during construction to comply with the New York State Guidelines for Urban Sediment and Erosion Control.

Seeding - All disturbed areas will be seeded as final grading has been completed and the area will no longer be disturbed and dust will be controlled on roadways with water. All seeding and fertilization shall be completed in accordance with Section 3 of the New York State Standards and Specifications for Erosion and Sediment Control.

Mulching - Mulching can be used alone or with seed depending on the desired outcome. Mulching shall be performed in accordance with Section 3 of the New York State Standards and Specifications for Erosion and Sediment Control. Mulch shall consist of hay or straw and shall be applied with a minimum thickness of 3" over disturbed areas. If soil can be seen through the mulch layer additional mulch is required.

Topsoiling – All disturbed areas will be topsoiled prior to the application of seed and mulch. Topsoil shall comply with Section 3 of the New York State Standards and Specifications for Erosion and Sediment Control.

4.3 Other Controls

On site generation of dust and tracking of sediment shall be minimized. A tracking pad/stabilized construction entrance shall be constructed to the access road to Stow Avenue.

4.4 Approved Local or Regional Control Plans

This storm water pollution prevention plan has been prepared in accordance with all local, regional, state and federal guidelines.

5.0 MAINTENANCE

All erosion control measures shall be maintained in accordance Section 7 of the New York State Guidelines for Urban Erosion and Sediment Control.

- The site superintendent shall inspect all erosion control measures at the beginning of each workday. If deficiencies are noted the erosion control measure shall be repaired or replaced prior to beginning work on that work day.
- On Fridays, the erosion control measures shall be inspected at noon. If deficiencies are noted, the measures shall be repaired or replaced prior to closing down for the weekend.
- If the site superintendent identifies that an erosion control measure is not working properly or not designed properly, the site superintendent shall contact a licensed professional immediately to review the deficiency and give recommendations.
- The site superintendent shall keep a daily log of the erosion and sediment measures and effectiveness.

Sediment Control Deficiencies include but are not limited to the following:

- > Fallen, broken, torn, un-keyed or bulging silt fence.
- Inadequate mulching
- Torn sediment filters
- Soil rilling in diversion ditches.
- > Out of place or decomposing hay bales.
- Sediment on roadways

6.0 INSPECTIONS

6.1 The operator shall have a qualified professional conduct an assessment of the site prior to construction activities. The professional shall certify in a report that the appropriate erosion and sediment controls described in the SWPPP and required by Part II.D of Permit No. GP-00-20-001 are installed or implemented to ensure overall preparedness of the site for the commencement of construction. Following the commencement of construction, erosion control devices shall be inspected once a week, and following rainfall events exceeding half an inch. A rain gauge will be installed on site to determine rainfall amount, which will dictate when the erosion control devices are to be inspected. The erosion control devices will be cleaned and repaired as necessary to insure proper operation. Following each inspection, the qualified professional shall document the following:

- 1. On a site map, indicate the extent of all disturbed site areas and drainage pathways. Indicate site areas that are expected to undergo initial disturbance or significant site work with the next 14-day period.
- 2. Indicate on a site map all areas of the site that have undergone active site work during the previous 14 days.
- 3. Indicate all disturbed site areas that have not undergone active site work during the previous 14 days.
- 4. Inspect all sediment control practices and record the approximated degree of sediment accumulation as a percentage of storage volume.
- 5. Inspect all erosion and sediment control practices and record all maintenance requirements such as verifying the integrity of the barrier or diversion system and containment systems. Identify any evidence of rill or gully erosion occurring on slops and any loss of stabilizing vegetation or seeding/mulching. Document any excessive deposition of sediment or ponding water along barrier or diversion systems. Record the depth of sediment within containment structures, any erosion near outlet and overflow structures, and verify the ability of rock filters around perforated riser pipes to pass water
- 6. All deficiencies that are identified with the implementation of the SWPPP.

6.2 Inspection Reports

The operator shall maintain a record of all inspection reports in a site logbook, which will be made available to permitting upon request. Prior to the commencement of construction, the engineer shall certify in the site logbook that the SWPPP meets all Federal, State and local erosion and sediment control requirements.

The operator shall post at the site, in a publicly accessible location a summary of the site inspection activities on a monthly basis.

6.3 Revisions to the SWPPP

Based on the inspections described above, the pollution prevention measures identified in this plan shall be revised as appropriate, but in no case later than (7) seven calendar days following the inspection. Such modifications shall provide for timely implementations of any changes to the plan within seven (7) calendar days following the inspection.

7.0 NON-STORMWATER DISCHARGES

There are no known non-storm water discharges from the site, such as dewatering operations associated with the development of this site. If there is a need to discharge any non-storm water from the site, measures must be in place to protect the downstream storm drainage system.

If groundwater weeps are identified by the site superintendent or the site inspector in an area which can result in a runoff violation prevent the effectiveness of the erosion control plan, these weeps shall be collected with an infiltration trench as shown on the detail sheets and diverted to the closed storm water management system.

8.0 WINTER SHUTDOWN PLAN

The contractor shall implement the following procedures in order to stabilize the site against erosion during a period of winter shutdown. In areas where vegetation has not been established when the winter shutdown is to be implemented, the contractor shall implement one or more of the following devices.

- Jute/Coconut fiber blankets
- Geotextile
- Hay/straw or mulch
- Tackifier
- Alternate method to be approved by the Design and City Engineer.

Inspections shall proceed as outlined in the inspection section of this document. Inspections shall also be conducted after significant snowmelt has been documented. If damage has been documented during the inspection, the contractor shall provide repairs prior to the next scheduled inspection.

9.0 CONTRACTORS CERTIFICATION

All contractors and subcontractors involved with erosion control measures on this poject shall sign and date a copy of the following certification statement before undertaking any construction activity at the project site.

"I certify under penalty of law that I understand and agree to comply with the terms and conditions of the pollution prevention plan for the construction site identified in such plan as a condition of authorization to discharge storm water. I also understand that the operator must comply with the terms and conditions of the New York State Pollutant Discharge Elimination System ("SPEDES") general permit for storm water discharges form construction activities and that it is unlawful for any person to cause or contribute to a violation of water quality standards. In addition this SWPPP was prepared in accordance with all federal, state and local erosion and sediment control requirements."

Contractor:	Company:	
	Name:	
	Title:	Date:
Subcontractor		
	Company:	
	Name:	
	Title:	Date:
Subcontractor	:	
	Company:	
	Name:	
	Title:	Date:

Subcontracto	r:	
	Company:	
	Name:	
	Title:	Date:
Subcontracto	r:	
	Company:	
	Name:	
	Title:	Date:
Subcontracto	r:	
	Company:	
	Name:	
	Title:	Date:
Subcontracto	r:	
	Company:	
	Name:	
	Title:	Date:

10.0 OPERATOR/OWNER CERTIFICATION

"I certify under penalty of law that this document and all attachments were Prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that false statements made herein are punishable as a class A misdemeanor pursuant to Section 210.45 of the Penal Law."

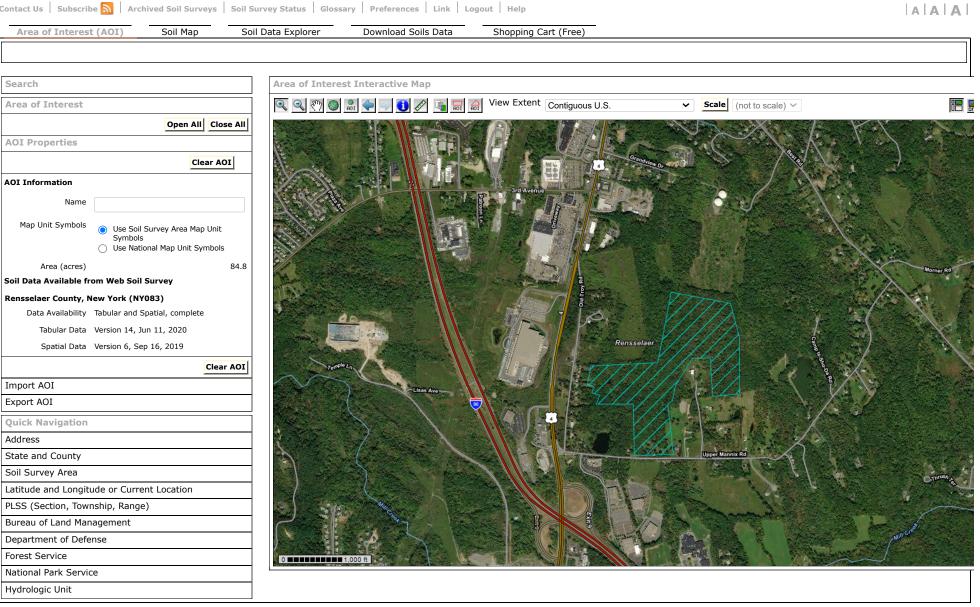
"I also certify that the SWPPP has been prepared in accordance with all federal, state and local regulations"

Operator/Owner:		
Company:		
Name:		
Title:	Date:	
Signature:		

11.0 CERTIFICATION OF SWPPP PREPARER

"I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the NYSDEC GP-00-20-001. Furthermore, I understand that certifying false, incorrect, or inaccurate information is a violation of NYSDEC GP-00-20-001 and could subject me to criminal, civil and/or administrative proceedings.

Engineer:


Company: Brett L. Steenburgh PE, PLLC
Name: Brett L. Steenburgh
Title: President
Signature:
Date:

APPENDIX A

Site Location Map

Contact Us Subscribe A Archived Soil Surveys Soil Survey Status Glossary Preferences Link Logout Help

FOIA | Accessibility Statement | Privacy Policy | Non-Discrimination Statement | Information Quality | USA.gov | White House

APPENDIX B

Erosion Control Plans

LEGEND

(i) (i) (i)

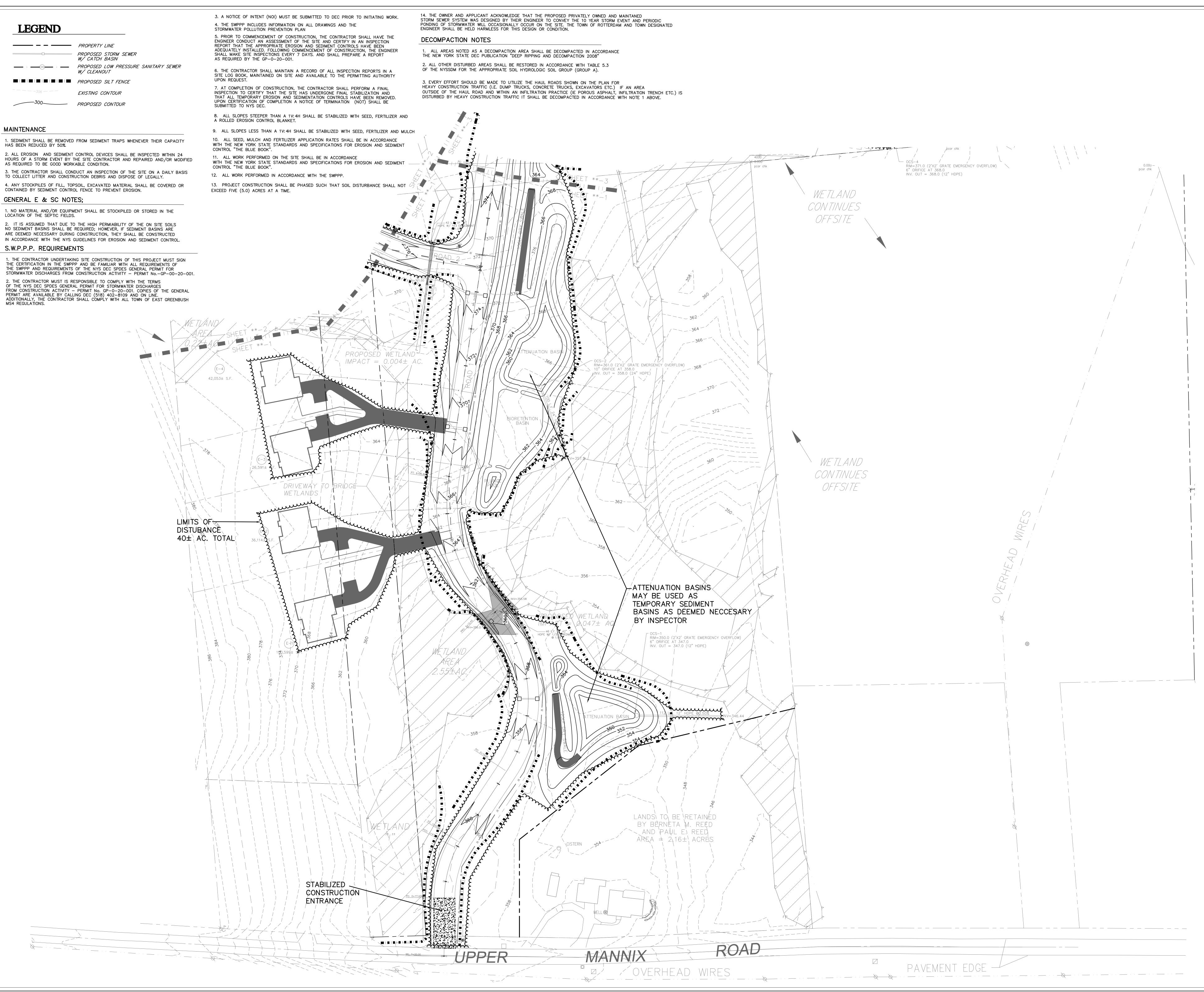
MAINTENANCE

1. SEDIMENT SHALL BE REMOVED FROM SEDIMENT TRAPS WHENEVER THEIR CAPACITY HAS BEEN REDUCED BY 50%.

2. ALL EROSION AND SEDIMENT CONTROL DEVICES SHALL BE INSPECTED WITHIN 24 HOURS OF A STORM EVENT BY THE SITE CONTRACTOR AND REPAIRED AND/OR MODIFIED AS REQUIRED TO BE GOOD WORKABLE CONDITION.

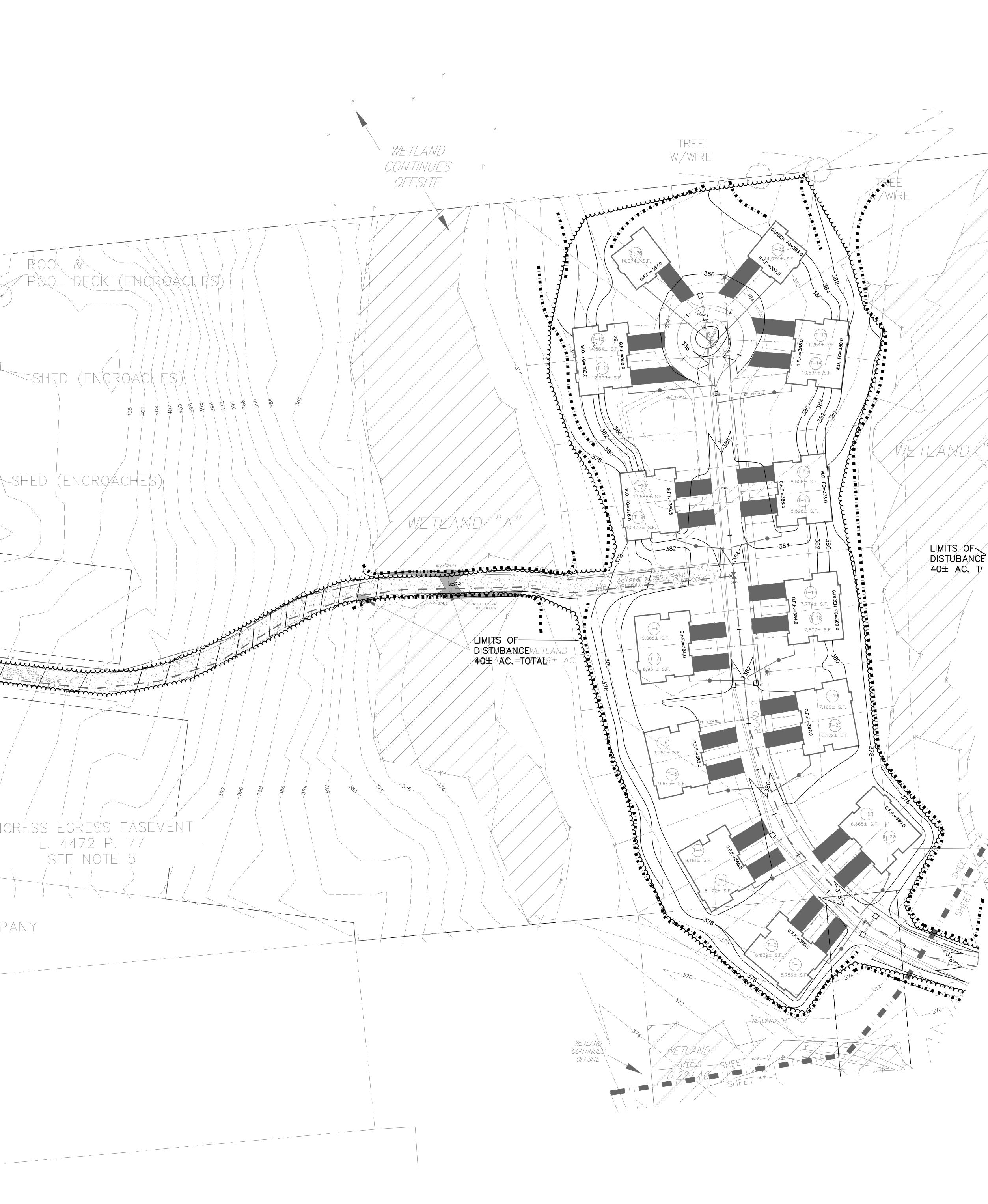
TO COLLECT LITTER AND CONSTRUCTION DEBRIS AND DISPOSE OF LEGALLY. 4. ANY STOCKPILES OF FILL, TOPSOIL, EXCAVATED MATERIAL SHALL BE COVERED OR CONTAINED BY SEDIMENT CONTROL FENCE TO PREVENT EROSION.

LOCATION OF THE SEPTIC FIELDS. 2. IT IS ASSUMED THAT DUE TO THE HIGH PERMIABILITY OF THE ON SITE SOILS NO SEDIMENT BASINS SHALL BE REQUIRED; HOWEVER, IF SEDIMENT BASINS ARE ARE DEEMED NECESSARY DURING CONSTRUCTION, THEY SHALL BE CONSTRUCTED


S.W.P.P.P. REQUIREMENTS

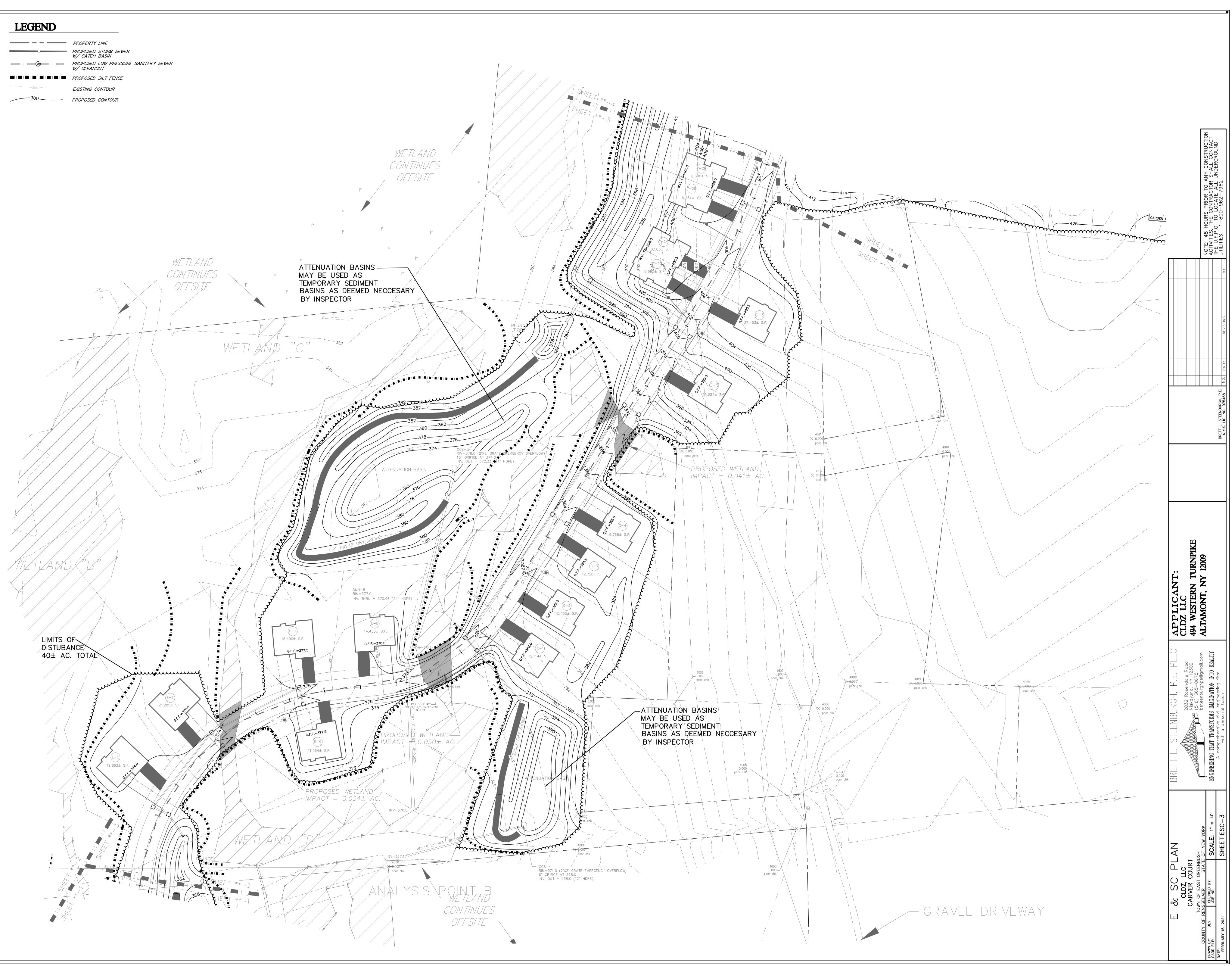
1. THE CONTRACTOR UNDERTAKING SITE CONSTRUCTION OF THIS PROJECT MUST SIGN THE CERTIFICATION IN THE SWPPP AND BE FAMILIAR WITH ALL REQUIREMENTS OF THE SWPPP AND REQUIREMENTS OF THE NYS DEC SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITY - PERMIT No.-GP-00-20-001.

OF THE NYS DEC SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITY - PERMIT No. GP-0-20-001. COPIES OF THE GENERAL PERMIT ARE AVAILABLE BY CALLING DEC (518) 402-8109 AND ON LINE. ADDITIONALLY, THE CONTRACTOR SHALL COMPLY WITH ALL TOWN OF EAST GREENBUSH MS4 REGULATIONS.


UPON REQUEST.

SUBMITTED TO NYS DEC.

NOTE: 48 HOURS PRIOR TO ANY CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL CONTACT THE U.F.P.O. TO LOCATE ALL UNDERGROUND UTILITIES. 1-800-962-7962
BRETT L. STEENBURGH, P.E. N.Y.S. LIC. NO. 075458 NO. DATE: REVISIONS
APPLICANT: CLDZ LLC 494 WESTERN TURNPIKE ALTAMONT, NY 12009
BRETT L. STEENBURGH, P.E. PLLC 2832 Rosendale Road Niskayuna, NY 12309 (518) 365–0675 bsteenburghpe@gmail.com A comprehensive civil engineering firm with a personal touch

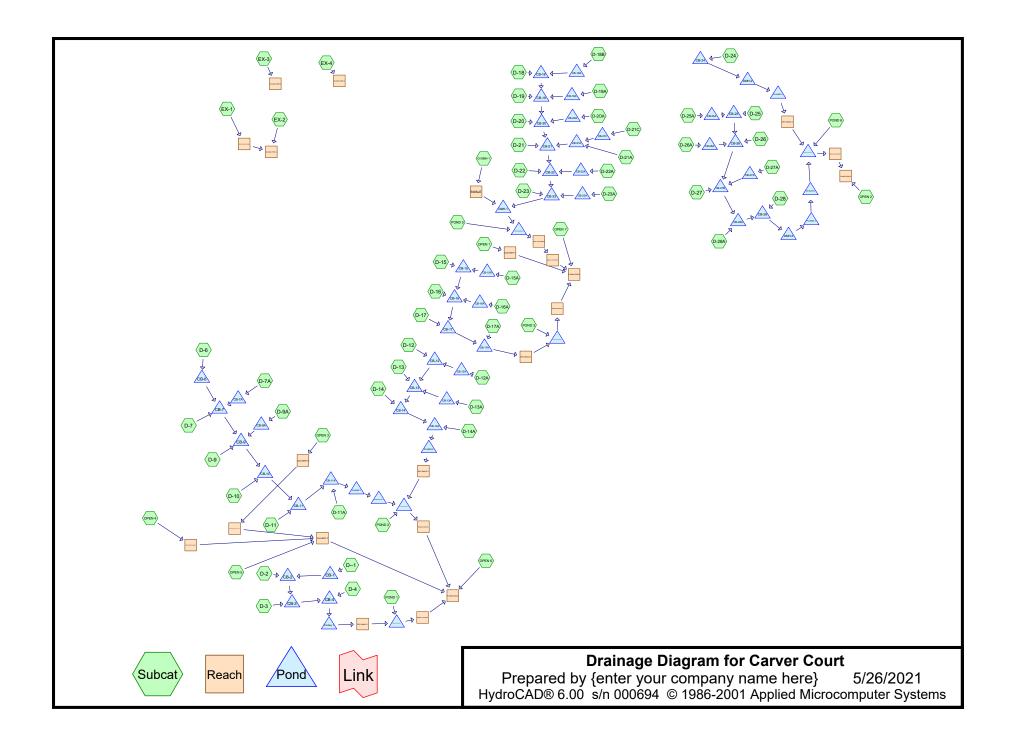

LEGEND ----- PROPERTY LINE PROPOSED STORM SEWER W/ CATCH BASIN PROPOSED SILT FENCE EXISTING CONTOUR 300_____ PROPOSED CONTOUR Z Q 8" PVC INVERT OUT: 416.40' LPSS INV. IN = RO, Burningener and and the state of the books books the state of the stat H PER APPENDIX D. OF THE FIRE CODE SON AMC UTILITY EASEMENT TO NEW YORK TELEPHONE COMPANY L. 890 P. 445 SEE NOTE 6

NOTE: 48 HOURS PRIOR TO ANY CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL CONTACT THE U.F.P.O. TO LOCATE ALL UNDERGROUND UTILITIES. 1-800-962-7962
BRETT L. STEENBURGH, P.E. NO. DATE: BY: NY.S. LUC. NO. 075458 NO. DATE: BY:
BRETT L. STEENBURGH, P.E. PLLCBRETT L. STEENBURGH, P.E. PLLCBRETT L. STEENBURGH, P.E. PLLCBRETT L. STEENBURGH, P.E. PLLCBasender RoadInskeyune, NY 12309BRETT TRANSTORMS IMAGINATION INTO REALITYA comprehensive civil engineering firmA comprehensive civil engineering firmA comprehensive civil engineering firm
E & SC PLAN CLDZ, LLC CLDZ, LLC CARVER COURT CLDZ, LLC CARVER COURT STAR TOWN OF EAST GREENBUSH STARE OF NEW YORK DATE: BLS CHECKED BY: DATE: DATE: SCALE: 1" = 40' DATE: TOWN 15, 2021 SHEET ESC-2

0
()

NOTE: 48 HOURS PRIOR TO ANY CONSTRUCTION ACTIVITIES, THE CONTRACTOR SHALL CONTACT THE U.F.P.O. TO LOCATE ALL UNDERGROUND UTILITIES. 1-800-962-7962
BRETT L. STEENBURGH, P.E. N.Y.S. LIC. NO. 075458
Đ
BRETT L. STEENBURGH, P.E. PLLC APPLICANT: 2832 Rosendale Road 2832 Rosendale Road Niskayuna, NY 12309 2832 Rosendale Road 1518) 365-0675 494 WESTIERN TURNPIKE A comprehensive civil engineering firm with a personal touch ALTAMONT, NY 12009

APPENDIX C


Drainage Calculations

NOTE: 48 HOURS PRIOR TO ANY CONSTRUCTION ACTIVITES, THE CONTRACTOR SHALL CONTACT HE U.F.P.O. TO LOCATE ALL UNDERGROUND UTILITES. 1-800-962-7962
PIKE M.X.S. LIC. NO. 075458 M.X.S. LIC. NO. 075458
BRETT L. STEENBURGH, P.E. PLLC BRETT L. STEENBURGH, P.E. PLLC ass2 Resendele Rood Niskoyuno. NY 12309 Sisto 365-0675 Disto 365
EX DRAINAGE AREAS CLDZ, LLC CLDZ, LLC CARVER COURT CARVER COURT TOWN OF EAST GREENBUSH STATE OF NEW YORK DATE: LOB NO. DATE: CHECKED BY: DATE: SCALE: 1" = 100' DATE: SCALE: 1" = 100'

	48 HOURS PRIOR TO ANY CONSTRUCTION TIES, THE CONTRACTOR SHALL CONTACT J.F.P.O. TO LOCATE ALL UNDERGROUND TES. 1-800-962-7962
	BRETT L. STEENBURGH, P.E. NOTE: 48 N.Y.S. LLC. NO. 075458 NO. DATE: REVISIONS
	BRETT L. STEENBURGH, P.E. PLLCBRETT L. STEENBURGH, P.E. PLLCS32 Rosendale Road Niskayuna, NY 12309S332 Rosendale Road Niskayuna, NY 12309S44 WESTERN TURNPIKE A comprehensive civil engineering firm with a personal touch
	PROPOSED DRAINAGE AREAS BRET CLDZ, LLC CLDZ, LLC CLDZ, LLC BRET CARVER COURT CARVER COURT CARVER COURT BRET TOWN OF EAST GREENBUSH TOWN OF EAST GREENBUSH ENCINER COUNTY OF RENSELAER STATE OF NEW YORK ENCINER DATE: DATE: JOB NO. SCALE: 1" = 100' DATE: TOMN OF CALE: 1" = 100' ENCINER

Carver Court Prepared by {enter your company name	
Runoff by SCS TR-20 n	plied Microcomputer Systems 5/26/2021 -20.00 hrs, dt=0.05 hrs, 301 points nethod, UH=SCS, TYPEII~2 Rainfall=3.85" rans method - Pond routing by Stor-Ind method
Subcatchment D1: D-1	Tc=6.0 min CN=98 Area=4,262 sf Runoff= 0.36 cfs 0.027 af
Subcatchment D-10: D-10	Tc=6.0 min CN=98 Area=3,302 sf Runoff= 0.28 cfs 0.021 af
Subcatchment D-11: D-11	Tc=6.0 min CN=98 Area=3,099 sf Runoff= 0.26 cfs 0.020 af
Subcatchment D-11A: D-11A	Tc=6.0 min CN=98 Area=2,486 sf Runoff= 0.21 cfs 0.016 af
Subcatchment D-12: D-12	Tc=16.6 min CN=87 Area=18,053 sf Runoff= 0.87 cfs 0.081 af
Subcatchment D-12A: D-12A	Tc=11.9 min CN=87 Area=17,038 sf Runoff= 0.93 cfs 0.076 af
Subcatchment D-13: D-13	Tc=6.0 min CN=94 Area=8,280 sf Runoff= 0.65 cfs 0.048 af
Subcatchment D-13A: D-13A	Tc=6.0 min CN=98 Area=2,837 sf Runoff= 0.24 cfs 0.018 af
Subcatchment D-14: D-14	Tc=20.7 min CN=87 Area=21,592 sf Runoff= 0.96 cfs 0.096 af
Subcatchment D-14A: D-14A	Tc=6.0 min CN=98 Area=5,177 sf Runoff= 0.44 cfs 0.033 af
Subcatchment D-15: D-15	Tc=6.0 min CN=98 Area=2,000 sf Runoff= 0.17 cfs 0.013 af
Subcatchment D-15A: D-15A	Tc=12.1 min CN=91 Area=7,050 sf Runoff= 0.43 cfs 0.037 af
Subcatchment D-16: D-16	Tc=6.0 min CN=98 Area=2,580 sf Runoff= 0.22 cfs 0.017 af
Subcatchment D-16A: D-16A	Tc=9.8 min CN=92 Area=8,484 sf Runoff= 0.57 cfs 0.046 af
Subcatchment D-17: D-17	$T_{0} = 6.0 \text{ min}$ CN=08 Aroo=2.577 of Pupoff= 0.30 of 0.023 of

Tc=6.0 min CN=98 Area=3,577 sf Runoff= 0.30 cfs 0.023 af

	arver Court TYPEII~2 Rainfall=3.85" 10 \ repared by {enter your company name here} rdroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Systems			
Subcatchment D-17A: D-17A	Tc=12.4 min CN=88 Area=22,859 sf	Pupoff- 1.29 ofc. 0.106 of		
Subcatchment D-18: D-18	Tc=15.4 min CN=86 Area=9,762 sf			
Subcatchment D-18B: D-18	Tc=20.3 min CN=87 Area=86,619 sf	Runoff= 3.87 cfs 0.387 af		
Subcatchment D-19: D-19	Tc=17.2 min CN=88 Area=27,495 sf	Runoff= 1.36 cfs 0.128 af		
Subcatchment D-19A: D-19A	Tc=17.3 min CN=85 Area=85,319 sf	Runoff= 3.80 cfs 0.354 af		
Subcatchment D-2: D-2	Tc=6.0 min CN=98 Area=4,523 sf	Runoff= 0.38 cfs 0.029 af		
Subcatchment D-20: D-20	Tc=13.4 min CN=91 Area=17,867 sf	Runoff= 1.06 cfs 0.093 af		
Subcatchment D-21: D-21	Tc=17.1 min CN=87 Area=13,201 sf	Runoff= 0.63 cfs 0.059 af		
Subcatchment D-21A: D-21A	Tc=22.0 min CN=89 Area=38,849 sf	Runoff= 1.79 cfs 0.187 af		
Subcatchment D-21C: D-21C	Tc=19.1 min CN=86 Area=1.196 ac	Runoff= 2.31 cfs 0.224 af		
Subcatchment D-22: D-22	Tc=12.3 min CN=87 Area=9,713 sf	Runoff= 0.53 cfs 0.044 af		
Subcatchment D-22A: D-22A	Tc=6.0 min CN=93 Area=3,475 sf	Runoff= 0.27 cfs 0.019 af		
Subcatchment D-23: D-23	Tc=13.1 min CN=89 Area=12,626 sf	Runoff= 0.71 cfs 0.061 af		
Subcatchment D-23A: D-23A	Tc=11.0 min CN=86 Area=0.401 ac	Runoff= 0.95 cfs 0.075 af		
Subcatchment D-24: D-24	Tc=21.4 min CN=89 Area=39,239 sf	Runoff= 1.83 cfs 0.189 af		
Subcatchment D-25: D-25	Tc=21.7 min CN=88 Area=22,353 sf	Runoff= 1.01 cfs 0.104 af		

Carver Court Prepared by {enter your company name						
HydroCAD® 6.00 s/n 000694 © 1986-2001 Ap	HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Systems 5/26/202					
Subcatchment D-25A: D-25A	Tc=13.0 min CN=86 Area=19,613 sf Runoff= 1.00 cfs 0.08	35 af				
Subcatchment D-26: D-26	Tc=23.0 min CN=90 Area=32,858 sf Runoff= 1.54 cfs 0.16	34 af				
Subcatchment D-26A: D-26A	Tc=14.3 min CN=88 Area=22,077 sf Runoff= 1.17 cfs 0.10)3 af				
Subcatchment D-27: D-27	Tc=16.3 min CN=91 Area=10,860 sf Runoff= 0.60 cfs 0.05	56 af				
Subcatchment D-27A: D-27A	Tc=6.0 min CN=88 Area=3,503 sf Runoff= 0.24 cfs 0.01	l6 af				
Subcatchment D-28: D-28	Tc=17.1 min CN=88 Area=25,225 sf Runoff= 1.25 cfs 0.11	l7 af				
Subcatchment D-28A: D-28A	Tc=6.0 min CN=93 Area=4,067 sf Runoff= 0.31 cfs 0.02	23 af				
Subcatchment D-2OA: D-20A	Tc=22.3 min CN=85 Area=52,267 sf Runoff= 2.10 cfs 0.21	l6 af				
Subcatchment D-3: D-3	Tc=6.0 min CN=98 Area=8,167 sf Runoff= 0.69 cfs 0.05	53 af				
Subcatchment D-4: D-4	Tc=6.0 min CN=98 Area=8,318 sf Runoff= 0.70 cfs 0.05	54 af				
Subcatchment D-6: D-6	Tc=17.1 min CN=88 Area=44,426 sf Runoff= 2.20 cfs 0.20)6 af				
Subcatchment D-7: D-7	Tc=21.4 min CN=88 Area=29,922 sf Runoff= 1.35 cfs 0.13	39 af				
Subcatchment D-7A: D-7A	Tc=21.4 min CN=88 Area=29,500 sf Runoff= 1.33 cfs 0.13	37 af				
Subcatchment D 94: CB 94	Tc=16.4 min CN=88 Area=39,040 sf Runoff= 1.97 cfs 0.18	31 af				
Subcatchment D-9A: CB-9A	Tc=16.4 min CN=88 Area=27,189 sf Runoff= 1.37 cfs 0.12	26 af				
Subcatchment D-DMH-1: D-DMH-1	Tc=6.0 min CN=85 Area=69,237 sf Runoff= 4.24 cfs 0.28	38 af				

Carver Court Prepared by {enter your company name	
HydroCAD® 6.00 s/n 000694 © 1986-2001 A	Applied Microcomputer Systems 5/26/2021
Subcatchment EX-1: EX-1	Tc=30.6 min CN=79 Area=16.430 ac Runoff= 19.73 cfs 2.317 af
Subcatchment EX-2: EX-2	Tc=41.6 min CN=79 Area=25.510 ac Runoff= 26.39 cfs 3.582 af
Subcatchment EX-3: EX-3	Tc=47.7 min CN=79 Area=35.510 ac Runoff= 34.18 cfs 4.974 af
Subcatchment EX-4: EX-4	Tc=27.4 min CN=79 Area=11.470 ac Runoff= 14.48 cfs 1.620 af
Subcatchment OPEN 1: OIPEN 1	Tc=42.8 min CN=79 Area=426,190 sf Runoff= 9.99 cfs 1.373 af
Subcatchment OPEN 2: OPEN 2	Tc=13.4 min CN=79 Area=168,705 sf Runoff= 6.51 cfs 0.550 af
Subcatchment OPEN 3: OPEN 3	Tc=50.3 min CN=79 Area=319,952 sf Runoff= 6.87 cfs 1.028 af
Subcatchment OPEN 4: OPEN 4	Tc=29.2 min CN=80 Area=632,860 sf Runoff= 18.60 cfs 2.138 af
Subcatchment OPEN 5: OPEN 5	Tc=29.8 min CN=79 Area=326,510 sf Runoff= 9.12 cfs 1.057 af
Subcatchment OPEN 6: OPEN 6	Tc=35.7 min CN=79 Area=224,401 sf Runoff= 5.76 cfs 0.725 af
Subcatchment OPEN 7: OPEN 7	Tc=36.5 min CN=79 Area=457,482 sf Runoff= 11.60 cfs 1.478 af
Subcatchment POND 1: POND 1	Tc=6.0 min CN=80 Area=17,554 sf Runoff= 0.89 cfs 0.060 af
Subcatchment POND 2: POND 2	Tc=6.0 min CN=80 Area=49,954 sf Runoff= 2.53 cfs 0.170 af
Subcatchment POND 3: POND 3	Tc=6.0 min CN=80 Area=42,753 sf Runoff= 2.16 cfs 0.146 af
Subcatchment POND 5: POND 5	Tc=6.0 min CN=80 Area=50,948 sf Runoff= 2.58 cfs 0.174 af
Subcatchment POND 6: POND 6	Tc=15.4 min CN=80 Area=140,626 sf Runoff= 5.40 cfs 0.478 af

Carver Court Prepared by {enter your co HydroCAD® 6.00 s/n 000694 @			ainfall=3.85" 10 Year Sto s	orm Event Page 5 <u>5/26/2021</u>
Reach CULVERT 1: CULVE		= 7.1 fps Capacity=	Inflow= 9.99 c 108.99 cfs Outflow= 9.98 c	
Reach CULVERT 2: CULVE			Inflow= 31.72 c	ofe 1 200 of
		9.8 fps Capacity= 1	08.99 cfs Outflow= 31.72 c	
Reach CULVERT 3: CULVE	RT 3		Inflow= 6.87 c	fs 1 028 af
	-	= 6.3 fps Capacity=	108.99 cfs Outflow= 6.87 c	
Reach DMH-5 TO OUTLET:	DMH-5 TO OUTLET		Inflow= 5.45 c	fs 2.319 af
		el= 4.9 fps Capacity=	= 17.28 cfs Outflow= 5.45 c	fs 2.317 af
Reach DRY SWALE 1: DRY	SWALE 1		Inflow= 2.11 c	fs 0.141 af
l	ength= 125.0' Max Ve	el= 1.0 fps Capacity=	= 59.21 cfs Outflow= 1.97 c	fs 0.141 af
Reach DRY SWALE 2: DRY	SWALE 2		Inflow= 3.44 c	fs 0.331 af
l	ength= 140.0' Max Ve.	el= 1.3 fps Capacity=	= 58.97 cfs Outflow= 3.41 c	fs 0.330 af
Reach DRY SWALE 3: DRY	SWALE 3		Inflow= 2.81 c	fs 0.241 af
l	ength= 220.0' Max Ve	el= 1.2 fps Capacity=	= 58.97 cfs Outflow= 2.69 c	fs 0.239 af
Reach DRY SWALE 4: (new	node)		Inflow= 0.00 c	fs 0.000 af
l	ength= 140.0' Max Ve	el= 0.0 fps Capacity=	= 58.97 cfs Outflow= 0.00 c	fs 0.000 af
Reach EX ANALYSIS A: EX	ANALYSIS A		Inflow= 45.73 c	fs 5.887 af
l	ength= 10.0' Max Vel	= 7.9 fps Capacity=	71.84 cfs Outflow= 45.73 c	fs 5.886 af
Reach EX-ANALYSIS B: EX	ANALYSIS B		Inflow= 34.18 c	fs 4.974 af
l	ength= 10.0' Max Vel	= 7.2 fps Capacity=	71.84 cfs Outflow= 34.18 c	fs 4.974 af
Reach EX-ANALYSIS C: EX			Inflow= 14.48 c	
l	ength= 10.0' Max Vel	= 5.6 fps Capacity=	71.84 cfs Outflow= 14.47 c	fs 1.619 af
Reach EX-WETLAND CHAN				
Len	gth= 1,200.0' Max Vel	= 5.7 fps Capacity=	66.95 cfs Outflow= 19.46 c	fs 2.304 af
Reach OCS-3 TO DMH-5: O			Inflow= 5.45 c	
l	ength= 274.0' Max Ve	el= 4.9 fps Capacity=	= 17.33 cfs Outflow= 5.45 c	fs 2.319 af
Reach OCS-4 TO OUTLET:			Inflow= 4.84 c	
	Length= 62.0' Max Ve	el= 9.2 fps Capacity=	= 44.02 cfs Outflow= 4.84 c	fs 0.991 af
Reach P-ANALYISIS C: P-A			Inflow= 9.14 c	
	Length= 10.0' Max Ve	el= 4.9 fps Capacity=	= 71.84 cfs Outflow= 9.13 c	
Reach P-ANALYSIS A: P-A			Inflow= 42.02 c	
I	ength= 10.0' Max Vel	= 7.7 fps Capacity=	71.84 cfs Outflow= 42.01 c	fs 6.313 af

Carver Court Prepared by {enter your company name here} HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Micro	TYPEII~2 Rainfall=3.85" 10 Year Storm EventPage 6pcomputer Systems5/26/2021
Reach P-ANALYSIS B: P-ANALYSIS B Length= 10.0' Max Vel= 6	Inflow= 27.69 cfs 5.532 af .8 fps Capacity= 71.84 cfs Outflow= 27.69 cfs 5.532 af
Reach P-WETLAND CHANNEL: p WETLAND CHA Length= 900.0' Max Vel= 6	NNEL 1 TO 2 Inflow= 18.60 cfs 2.138 af .0 fps Capacity= 74.86 cfs Outflow= 18.44 cfs 2.130 af
Reach POND 1 OUTLET: POND 1 OUTLET Length= 112.0' Max Vel	Inflow= 0.84 cfs 0.191 af = 3.1 fps Capacity= 2.73 cfs Outflow= 0.84 cfs 0.191 af
Reach POND 2 OUTLET: POND 2 OUTLET Length= 100.0' Max Vel=	Inflow= 4.13 cfs 1.190 af 4.5 fps Capacity= 17.33 cfs Outflow= 4.13 cfs 1.189 af
Reach POND 3 OUTLET: POND 3 OUTLET Length= 165.0' Max Vel	Inflow= 1.07 cfs 0.364 af = 3.3 fps Capacity= 2.74 cfs Outflow= 1.07 cfs 0.364 af
Reach SWALE: SWALE Length= 1,050.0' Max Vel	Inflow= 4.24 cfs 0.288 af = 2.1 fps Capacity= 6.90 cfs Outflow= 3.20 cfs 0.285 af
Reach SWALE FROM CULVERT 3 TO 2: SWALE F Length= 800.0' Max Vel=	ROM CULVERT 3 TO 2 Inflow= 6.87 cfs 1.028 af 3.5 fps Capacity= 32.86 cfs Outflow= 6.80 cfs 1.022 af
Pond ATTENUATION 1: ATTENUATION POND 1	Peak Storage= 38,937 cf Inflow= 23.27 cfs 2.346 af Primary= 5.45 cfs 2.321 af Outflow= 5.45 cfs 2.321 af
Pond ATTENUATION BASIN 1: ATTENUATION BA	SIN 1 Peak Storage= 3,303 cf Inflow= 2.69 cfs 0.201 af Primary= 0.84 cfs 0.191 af Outflow= 0.84 cfs 0.191 af
Pond ATTENUATION BASIN 2: ATTENUATION BA	SIN ₽ eak Storage= 16,300 cf Inflow= 9.42 cfs 1.225 af Primary= 4.13 cfs 1.190 af Outflow= 4.13 cfs 1.190 af
Pond ATTENUATION BASIN 6: ATTENUATION BA	SINReak Storage= 12,175 cf Inflow= 10.49 cfs 1.013 af Primary= 4.84 cfs 0.991 af Outflow= 4.84 cfs 0.991 af
Pond ATTENUATION POND 3: ATTENUATION PO	ND 3 Peak Storage= 6,933 cf Inflow= 3.98 cfs 0.385 af Primary= 1.07 cfs 0.364 af Outflow= 1.07 cfs 0.364 af
Pond BIO BASIN 2: BIO BASIN 2	Peak Storage= 4,112 cf Inflow= 6.29 cfs 0.592 af Primary= 6.00 cfs 0.535 af Outflow= 6.00 cfs 0.535 af
Pond BIORETENTION 1: BIORETENTION BASIN 1	Peak Storage= 10,394 cf Inflow= 8.46 cfs 0.803 af Primary= 5.77 cfs 0.725 af Outflow= 5.77 cfs 0.725 af
Pond CB-1: CB-1	Peak Storage= 6 cf Inflow= 0.36 cfs 0.027 af Primary= 0.36 cfs 0.027 af Outflow= 0.36 cfs 0.027 af
Pond CB-10: CB-10	Peak Storage= 21 cf Inflow= 8.24 cfs 0.810 af Primary= 8.24 cfs 0.810 af Outflow= 8.24 cfs 0.810 af

Carver Court

Prepared by {enter your company name here} HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Systems

TYPEII~2 Rainfall=3.85" 10 Year Storm Event Page 7 5/26/2021

Pond CB-11: CB-11	Peak Storage= 23 cf Inflow= 8.37 cfs 0.830 af
	Primary= 8.37 cfs 0.830 af Outflow= 8.37 cfs 0.830 af
Pond CB-11A: CB-11A	Peak Storage= 23 cf Inflow= 8.47 cfs 0.846 af
	Primary= 8.47 cfs 0.846 af Outflow= 8.47 cfs 0.846 af
Pond CB-12: CB-12	Peak Storage= 12 cf Inflow= 1.76 cfs 0.157 af
	Primary= 1.76 cfs 0.157 af Outflow= 1.76 cfs 0.157 af
Pond CB-12A: CB-12A	Peak Storage= 9 cf Inflow= 0.93 cfs 0.076 af
	Primary= 0.93 cfs 0.076 af Outflow= 0.93 cfs 0.076 af
Pond CB-13: CB-13	Peak Storage= 14 cf Inflow= 2.40 cfs 0.223 af
	Primary= 2.40 cfs 0.223 af Outflow= 2.40 cfs 0.223 af
Pond CB-13A: CB-13A	Peak Storage= 4 cf Inflow= 0.24 cfs 0.018 af
	Primary= 0.24 cfs 0.018 af Outflow= 0.24 cfs 0.018 af
Pond CB-14: CB-14	Peak Storage= 16 cf Inflow= 3.16 cfs 0.319 af
	Primary= 3.16 cfs 0.319 af Outflow= 3.16 cfs 0.319 af
Pond CB-14A: CB-14A	Peak Storage= 17 cf Inflow= 3.47 cfs 0.353 af
	Primary= 3.47 cfs 0.353 af Outflow= 3.47 cfs 0.353 af
Pond CB-15: CB-15	Peak Storage= 6 cf Inflow= 0.56 cfs 0.049 af
	Primary= 0.56 cfs 0.049 af Outflow= 0.56 cfs 0.049 af
Pond CB-15A: CB-15A	Peak Storage= 6 cf Inflow= 0.43 cfs 0.037 af
	Primary= 0.43 cfs 0.037 af Outflow= 0.43 cfs 0.037 af
Pond CB-16: CB-16	Peak Storage= 10 cf Inflow= 1.32 cfs 0.112 af
	Primary= 1.32 cfs 0.111 af Outflow= 1.32 cfs 0.111 af
Pond CB-16A: CB-16A	Peak Storage= 7 cf Inflow= 0.57 cfs 0.046 af
	Primary= 0.57 cfs 0.046 af Outflow= 0.57 cfs 0.046 af
Pond CB-17: CB-17	Peak Storage= 13 cf Inflow= 1.60 cfs 0.135 af
	Primary= 1.60 cfs 0.135 af Outflow= 1.60 cfs 0.135 af
Pond CB-17A: CB-17A	Peak Storage= 19 cf Inflow= 2.81 cfs 0.241 af
	Primary= 2.81 cfs 0.241 af Outflow= 2.81 cfs 0.241 af
Pond CB-18: CB-18	Peak Storage= 16 cf Inflow= 4.32 cfs 0.429 af
	Primary= 4.32 cfs 0.429 af Outflow= 4.32 cfs 0.429 af
Pond CB-18A: CB-18A AND B	Peak Storage= 18 cf Inflow= 3.87 cfs 0.387 af
	Primary= 3.87 cfs 0.387 af Outflow= 3.87 cfs 0.387 af

Carver Court

TVPFII~2

Prepared by {enter your company name here} HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Systems

TYPEII~2 Rainfall=3.85" 10 Year Storm EventPage 8omputer Systems5/26/2021

Pond CB-19: CB-19	Peak Storage= 22 cf Inflow= 9.44 cfs 0.910 af Primary= 9.44 cfs 0.910 af Outflow= 9.44 cfs 0.910 af
Pond CB-19A: CB-19A	Peak Storage= 15 cf Inflow= 3.80 cfs 0.354 af Primary= 3.80 cfs 0.354 af Outflow= 3.80 cfs 0.354 af
Pond CB-2: CB-2	Peak Storage= 7 cf Inflow= 0.74 cfs 0.057 af Primary= 0.74 cfs 0.057 af Outflow= 0.74 cfs 0.057 af
Pond CB-20: CB-20	Peak Storage= 27 cf Inflow= 12.40 cfs 1.219 af Primary= 12.40 cfs 1.219 af Outflow= 12.40 cfs 1.219 af
Pond CB-20A: CB-20A	Peak Storage= 14 cf Inflow= 2.10 cfs 0.216 af Primary= 2.10 cfs 0.216 af Outflow= 2.10 cfs 0.216 af
Pond CB-21: CB-21	Peak Storage= 29 cf Inflow= 17.10 cfs 1.689 af Primary= 17.10 cfs 1.689 af Outflow= 17.10 cfs 1.689 af
Pond CB-21A: CB-21A	Peak Storage= 16 cf Inflow= 4.08 cfs 0.411 af Primary= 4.08 cfs 0.411 af Outflow= 4.08 cfs 0.411 af
Pond CB-21C: CB-21C	Peak Storage= 17 cf Inflow= 2.31 cfs 0.224 af Primary= 2.31 cfs 0.224 af Outflow= 2.31 cfs 0.224 af
Pond CB-22: CB-22	Peak Storage= 29 cf Inflow= 17.66 cfs 1.752 af Primary= 17.66 cfs 1.752 af Outflow= 17.66 cfs 1.752 af
Pond CB-22A: CB-22A	Peak Storage= 5 cf Inflow= 0.27 cfs 0.019 af Primary= 0.27 cfs 0.019 af Outflow= 0.27 cfs 0.019 af
Pond CB-23: CB-23	Peak Storage= 31 cf Inflow= 19.02 cfs 1.888 af Primary= 19.02 cfs 1.888 af Outflow= 19.02 cfs 1.888 af
Pond CB-23A: CB-23A	Peak Storage= 10 cf Inflow= 0.95 cfs 0.075 af Primary= 0.95 cfs 0.075 af Outflow= 0.95 cfs 0.075 af
Pond CB-24: CB-24	Peak Storage= 14 cf Inflow= 1.83 cfs 0.189 af Primary= 1.83 cfs 0.189 af Outflow= 1.83 cfs 0.189 af
Pond CB-25: CB-25	Peak Storage= 12 cf Inflow= 1.90 cfs 0.188 af Primary= 1.90 cfs 0.188 af Outflow= 1.90 cfs 0.188 af
Pond CB-25A: CB-25A	Peak Storage= 10 cf Inflow= 1.00 cfs 0.085 af Primary= 1.00 cfs 0.085 af Outflow= 1.00 cfs 0.085 af
Pond CB-26: CB-26	Peak Storage= 18 cf Inflow= 4.45 cfs 0.454 af Primary= 4.45 cfs 0.454 af Outflow= 4.45 cfs 0.454 af

Carver Court

Prepared by {enter your company name here} HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Systems

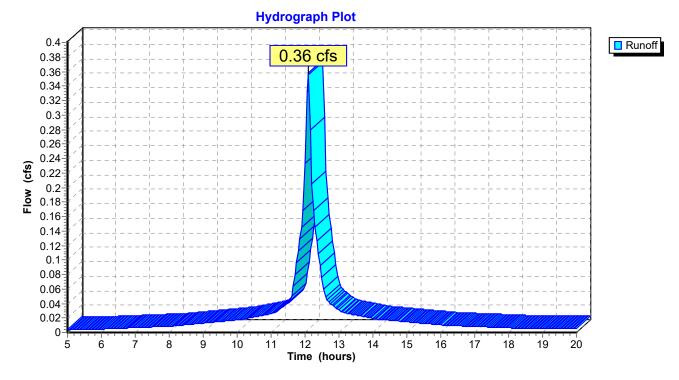
 TYPEII~2 Rainfall=3.85" 10 Year Storm Event

 Page 9

 computer Systems
 5/26/2021

Pond CB-26A: CB-26A	Peak Storage= 9 cf Inflow= 1.17 cfs 0.103 af Primary= 1.17 cfs 0.103 af Outflow= 1.17 cfs 0.103 af
Pond CB-27A: CB-27A	Peak Storage= 4 cf Inflow= 0.24 cfs 0.016 af Primary= 0.24 cfs 0.016 af Outflow= 0.24 cfs 0.016 af
Pond CB-27B: CB-27.B	Peak Storage= 18 cf Inflow= 5.17 cfs 0.527 af Primary= 5.17 cfs 0.527 af Outflow= 5.17 cfs 0.527 af
Pond CB-28: CB-28	Peak Storage= 26 cf Inflow= 6.58 cfs 0.666 af Primary= 6.58 cfs 0.666 af Outflow= 6.58 cfs 0.666 af
Pond CB-28A: CB-28A	Peak Storage= 22 cf Inflow= 5.33 cfs 0.549 af Primary= 5.33 cfs 0.549 af Outflow= 5.33 cfs 0.549 af
Pond CB-3: CB-3	Peak Storage= 12 cf Inflow= 1.43 cfs 0.109 af Primary= 1.43 cfs 0.109 af Outflow= 1.43 cfs 0.109 af
Pond CB-4: CB-4	Peak Storage= 16 cf Inflow= 2.13 cfs 0.163 af Primary= 2.13 cfs 0.163 af Outflow= 2.13 cfs 0.163 af
Pond CB-6: CB-6	Peak Storage= 13 cf Inflow= 2.20 cfs 0.206 af Primary= 2.20 cfs 0.206 af Outflow= 2.20 cfs 0.206 af
Pond CB-7: CB-7	Peak Storage= 17 cf Inflow= 4.83 cfs 0.482 af Primary= 4.83 cfs 0.482 af Outflow= 4.83 cfs 0.482 af
Pond CB-7A: CB-7A	Peak Storage= 10 cf Inflow= 1.33 cfs 0.137 af Primary= 1.34 cfs 0.137 af Outflow= 1.34 cfs 0.137 af
Pond CB-9: CB-9	Peak Storage= 22 cf Inflow= 8.11 cfs 0.789 af Primary= 8.11 cfs 0.789 af Outflow= 8.11 cfs 0.789 af
Pond CB-9A: CB-9A	Peak Storage= 10 cf Inflow= 1.37 cfs 0.126 af Primary= 1.37 cfs 0.126 af Outflow= 1.37 cfs 0.126 af
Pond DMH-1: DMH-1	Peak Storage= 40 cf Inflow= 21.98 cfs 2.172 af Primary= 21.98 cfs 2.172 af Outflow= 21.98 cfs 2.172 af
Pond DMH-2: DMH-2	Peak Storage= 12 cf Inflow= 1.83 cfs 0.189 af Primary= 1.83 cfs 0.189 af Outflow= 1.83 cfs 0.189 af
Pond DMH-3: DMH-3	Peak Storage= 24 cf Inflow= 6.58 cfs 0.666 af Primary= 6.58 cfs 0.666 af Outflow= 6.58 cfs 0.666 af
Pond Forbay 1: FORBAY 1	Peak Storage= 1,087 cf Inflow= 2.13 cfs 0.163 af Primary= 2.11 cfs 0.141 af Outflow= 2.11 cfs 0.141 af

Carver Court Prepared by {enter your company name here} <u>HydroCAD® 6.00_s/n 000694_© 1986-2001 Applied Micro</u>	TYPEII~2 Rainfall=3.85" 10 Year Storm Event Page 10 pcomputer Systems 5/26/2021
Pond PLUNG 2: PLUNGE 2	Peak Storage= 1,333 cf Inflow= 3.47 cfs 0.353 af Primary= 3.44 cfs 0.331 af Outflow= 3.44 cfs 0.331 af
Pond PLUNGE 1: PLUNGE 1	Peak Storage= 2,249 cf Inflow= 8.47 cfs 0.846 af Primary= 8.46 cfs 0.803 af Outflow= 8.46 cfs 0.803 af
Pond PLUNGE 4: PLUNGE 4	Peak Storage= 8,212 cf Inflow= 1.83 cfs 0.189 af Primary= 0.00 cfs 0.000 af Outflow= 0.00 cfs 0.000 af
Pond PLUNGE 5: PLUNGE 5	Peak Storage= 4,939 cf Inflow= 6.58 cfs 0.666 af Primary= 6.29 cfs 0.592 af Outflow= 6.29 cfs 0.592 af
Runoff Area = 177.	476 ac Volume = 26.504 af Average Depth = 1.79"

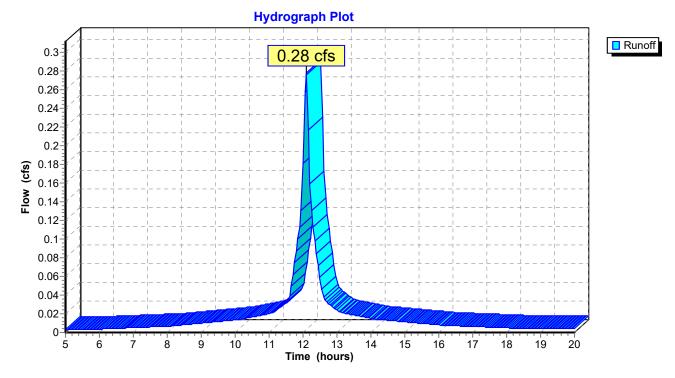

Subcatchment D--1: D-1

Runoff = 0.36 cfs @ 12.09 hrs, Volume= 0.027 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Are	ea (sf)	CN	Description		
	4,262	98 Paved parking & roofs			
Tc I (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN

Subcatchment D--1: D-1

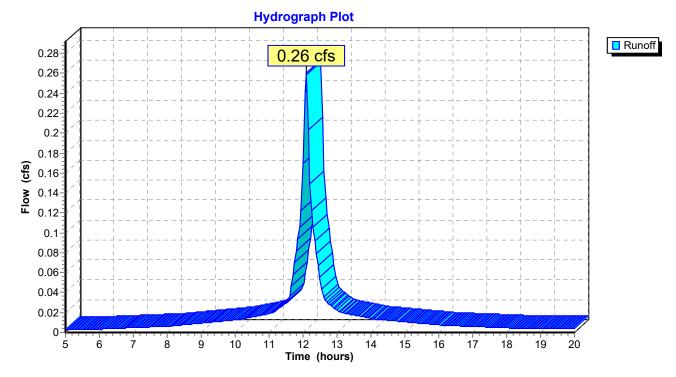

Subcatchment D-10: D-10

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 0.021 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN	Description		
	3,302	98 Paved parking & roofs			
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN

Subcatchment D-10: D-10

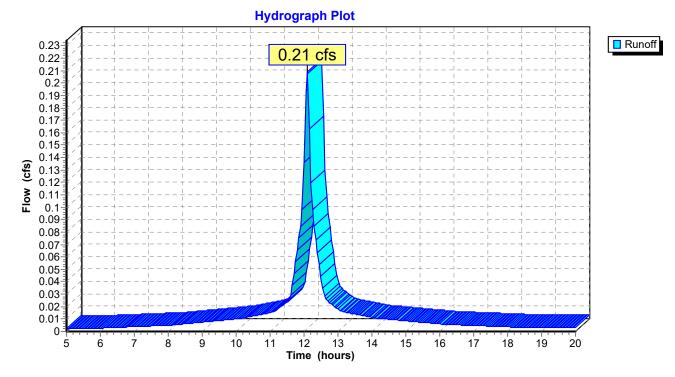

Subcatchment D-11: D-11

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.020 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area (s	f) CN	Description							
3,09	99 98	98 Paved roads w/curbs & sewers							
Tc Lene (min) (fe		,	Capacity (cfs)	Description					
6.0				Direct Entry, TR 55 MIN					

Subcatchment D-11: D-11


Subcatchment D-11A: D-11A

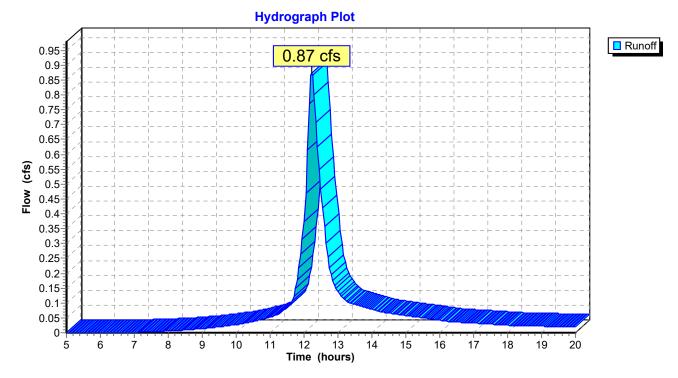
Runoff = 0.21 cfs @ 12.09 hrs, Volume= 0.016 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area (sf)	CN Descripti	on	
2,486	98		
Tc Length (min) (feet)	Slope Veloci (ft/ft) (ft/sec		Description
6.0			Direct Entry, TR55 MIN

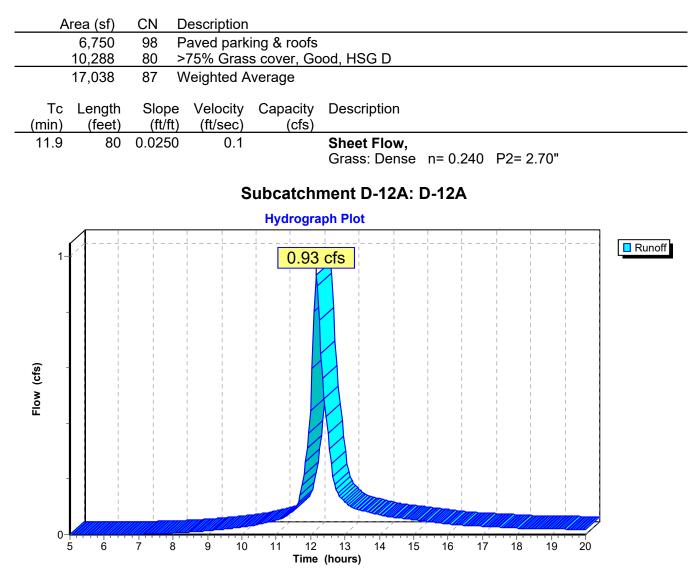
Subcatchment D-11A: D-11A

Subcatchment D-12: D-12

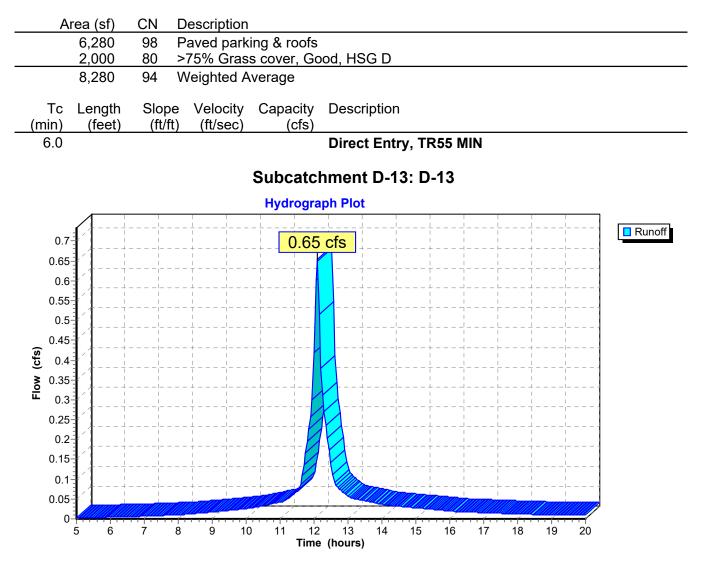

Page 15 5/26/2021

Runoff =	0.87 cfs @	12.23 hrs, Volume=	0.081 af
----------	------------	--------------------	----------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"


_	A	rea (sf)	CN	Description				
_		7,375	98	Paved park	ing & roofs			
10,678 80 >75% Grass cover, Good, HSG D								
		18,053	87	Weighted A	verage			
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
_	16.3	75	0.0100	0.1		Sheet Flow,		
	0.3	50	0.0150	2.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps		
_	16.6	125	Total					

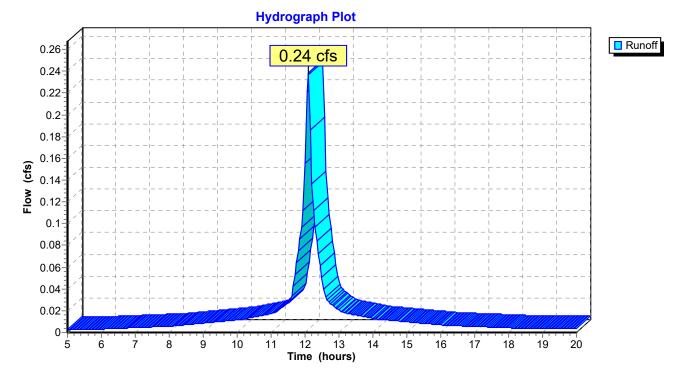
Subcatchment D-12: D-12


Subcatchment D-12A: D-12A

Runoff = 0.93 cfs @ 12.16 hrs, Volume= 0.076 af

Subcatchment D-13: D-13

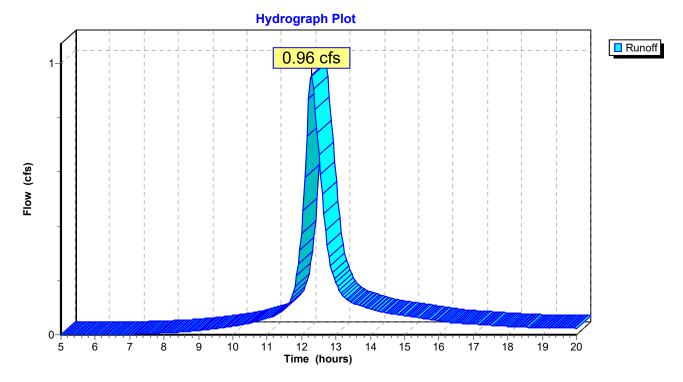
Runoff = 0.65 cfs @ 12.09 hrs, Volume= 0.048 af


Subcatchment D-13A: D-13A

Runoff = 0.24 cfs @ 12.09 hrs, Volume= 0.018 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

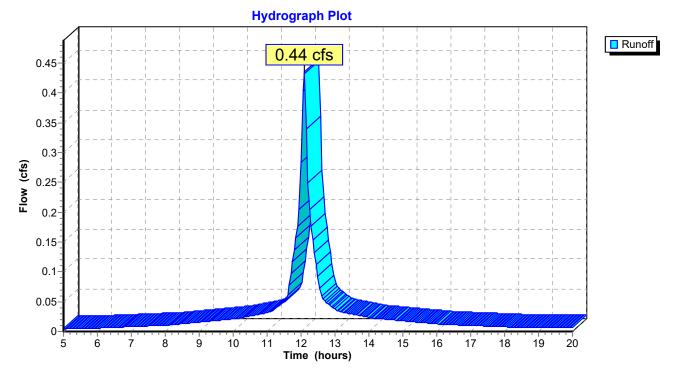
A	rea (sf)	CN	Description		
	2,837	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN


Subcatchment D-13A: D-13A

Subcatchment D-14: D-14

Runoff = 0.96 cfs @ 12.28 hrs, Volume= 0.096 af

A	rea (sf)	CN [Description			_						
	8,000	98 F	Paved park	ing & roofs								
	13,592	80 >	-75% Gras	s cover, Go	ood, HSG D	_						
	21,592 87 Weighted Average											
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
20.5	100	0.0100	0.1		Sheet Flow,							
0.2	25	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps							
20.7	125	Total				_						
	Subcatchment D-14: D-14											

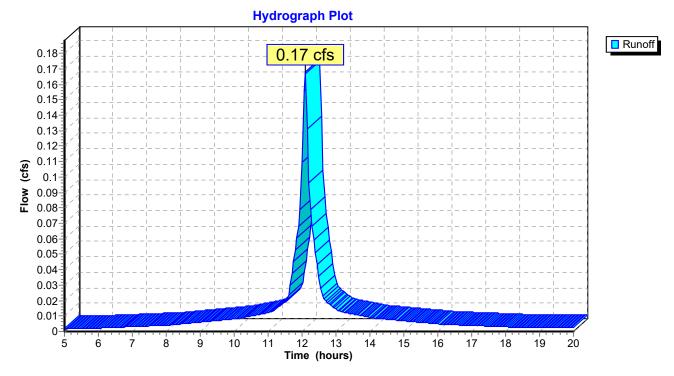

Subcatchment D-14A: D-14A

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.033 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN [Description		
	5,177	98 F	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN
			-		

Subcatchment D-14A: D-14A

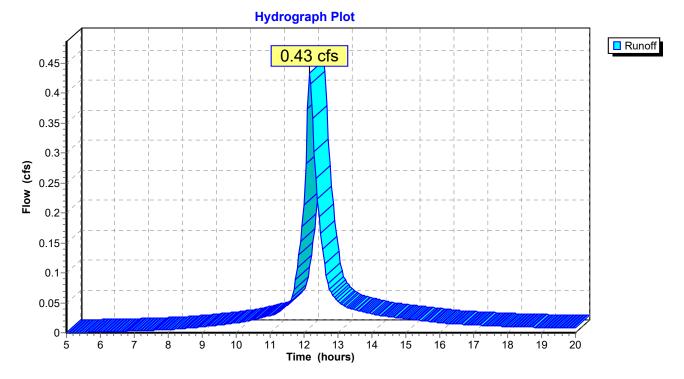

Subcatchment D-15: D-15

Runoff = 0.17 cfs @ 12.09 hrs, Volume= 0.013 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Are	ea (sf)	CN	Description		
	2,000	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, tr 55 MIN

Subcatchment D-15: D-15

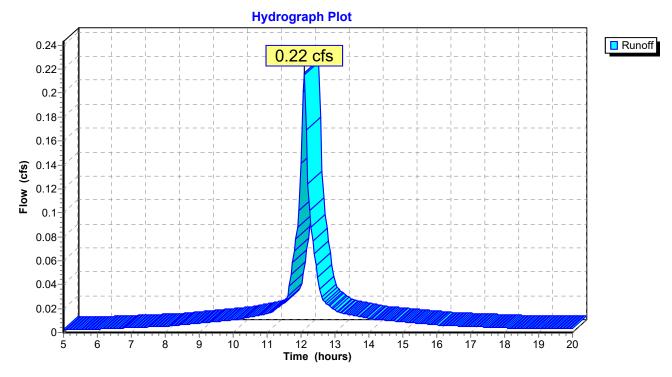

Subcatchment D-15A: D-15A

Runoff = 0.43 cfs @ 12.16 hrs, Volume= 0.037 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

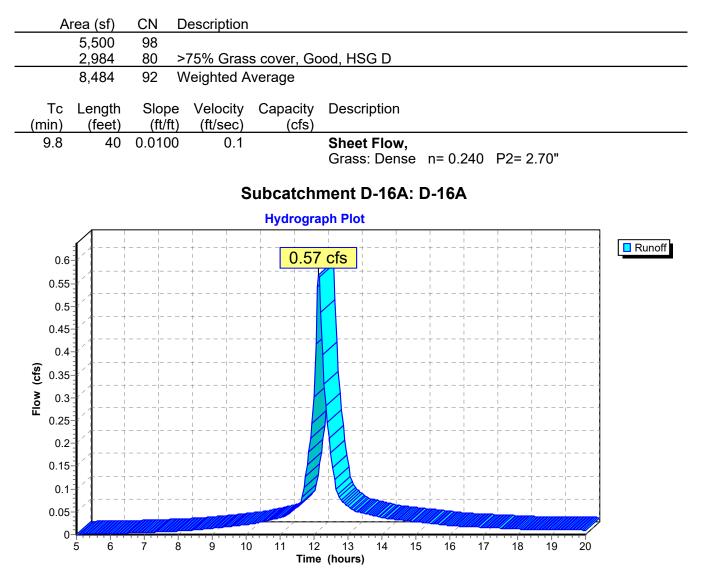
_	A	rea (sf)	CN	Description							
		4,300	98	98 Paved parking & roofs							
_		2,750	80								
		7,050	91	Weighted A	verage						
	Тс	Length	Slope	e Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)						
	11.8	50	0.0100	0.1		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 2.70"					
	0.3	75	0.0500	9 4.5		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	12.1	125	Total								

Subcatchment D-15A: D-15A


Subcatchment D-16: D-16

Runoff = 0.22 cfs @ 12.09 hrs, Volume= 0.017 af

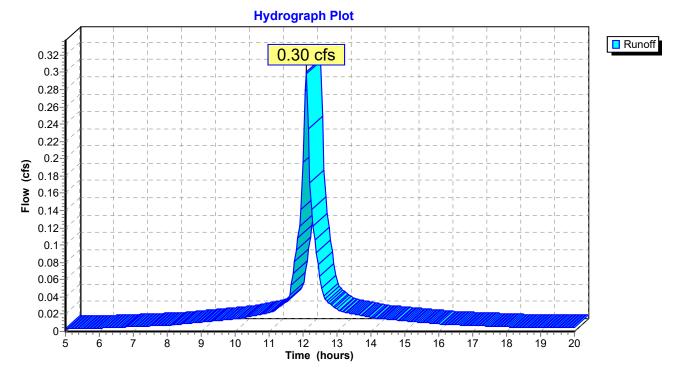
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"


A	rea (sf)	CN	Description		
	2,580	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
6.0					Direct Entry, tr 55 MIN

Subcatchment D-16: D-16

Subcatchment D-16A: D-16A

Runoff = 0.57 cfs @ 12.14 hrs, Volume= 0.046 af


Subcatchment D-17: D-17

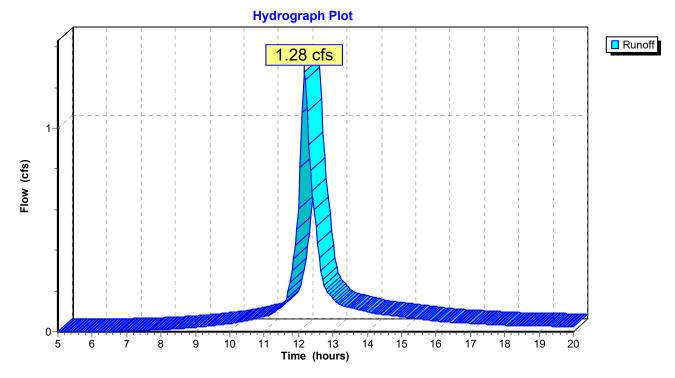
Runoff = 0.30 cfs @ 12.09 hrs, Volume= 0.023 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN	Description		
	3,577	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry, TR 55 MIN

Subcatchment D-17: D-17

Subcatchment D-17A: D-17A


Page 26 5/26/2021

Runoff 1.28 cfs @ 12.17 hrs, Volume= 0.106 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

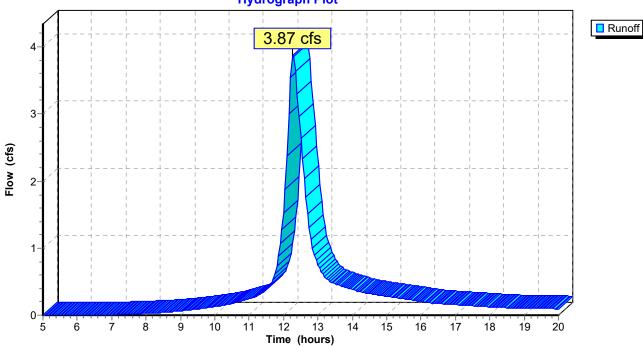
Ar	ea (sf)	CN [Description					
	10,500 98 Paved roads w/curbs & sewers							
	12,359 80 >75% Grass cover, Good, HSG D							
	22,859	88 V	Veighted A	verage				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
11.8	50	0.0100	0.1		Sheet Flow,			
0.6	150	0.0400	4.1		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
12.4	200	Total						

Subcatchment D-17A: D-17A

Subcatchment D-18: D-18

Runoff = 0.47 cfs @ 12.21 hrs, Volume= 0.042 af

Subcatchment D-18B: D-18

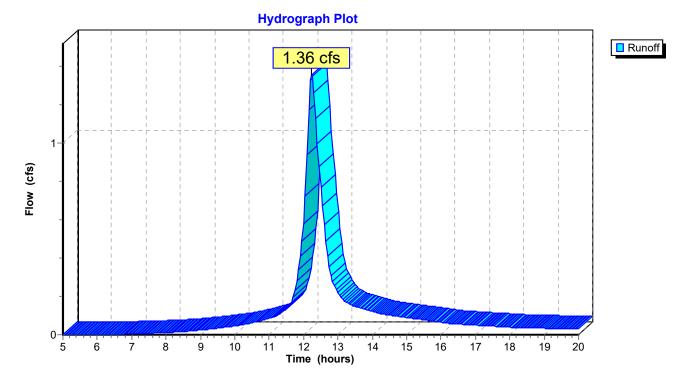

Page 28 5/26/2021

Runoff	=	3.87 cfs @	12.28 hrs, Volume=	0.387 af
--------	---	------------	--------------------	----------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

	A	rea (sf)	CN	Description		
		34,270	98	Paved park	ing & roofs	
		52,349	80	>75% Ġras	s cover, Go	bod, HSG D
		86,619	87	Weighted A	verage	
т	c	Length	Slope	e Velocity	Capacity	Description
, mir		(feet)	(ft/ft	,	(cfs)	Decemption
17.	7	100	0.0400	0.1		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.70"
1.	9	100	0.0300	0.9		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
0.	7	180	0.0500) 4.5		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
20.	3	380	Total			

Subcatchment D-18B: D-18



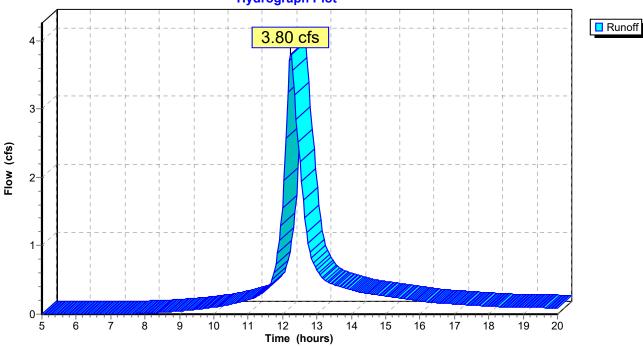
Hydrograph Plot

Subcatchment D-19: D-19

Runoff = 1.36 cfs @ 12.23 hrs, Volume= 0.128 af

A	rea (sf)	CN	Description						
	12,375	98	Paved park	ing & roofs					
	15,120	80	>75% Gras	s cover, Go	bod, HSG D				
	27,495	88	Weighted A	verage					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
15.4	70	0.0100	0.1		Sheet Flow,				
1.8	225	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps				
17.2	295	Total							
	Subcatchment D-19: D-19								

Subcatchment D-19A: D-19A


Page 30 5/26/2021

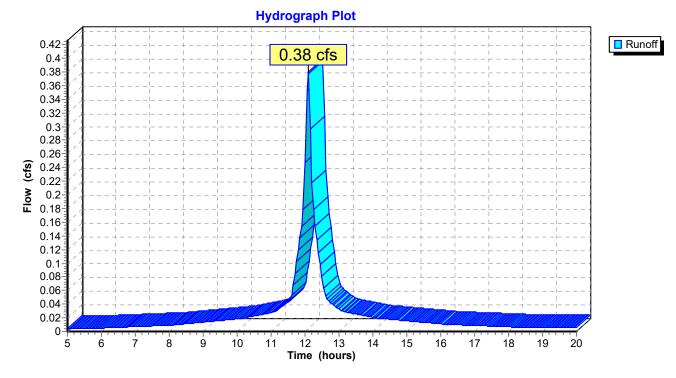
Runoff 3.80 cfs @ 12.24 hrs, Volume= 0.354 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

_	A	rea (sf)	CN	Description		
		22,500	98	Paved park	ing & roofs	
_		62,819	80	>75% Gras	s cover, Go	bod, HSG D
		85,319	85	Weighted A	verage	
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
_	14.2	100	0.0250			Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.70"
	2.3	292	0.0200	2.1		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	0.8	100	0.0100	2.0		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	17.3	492	Total			

Subcatchment D-19A: D-19A

Hydrograph Plot

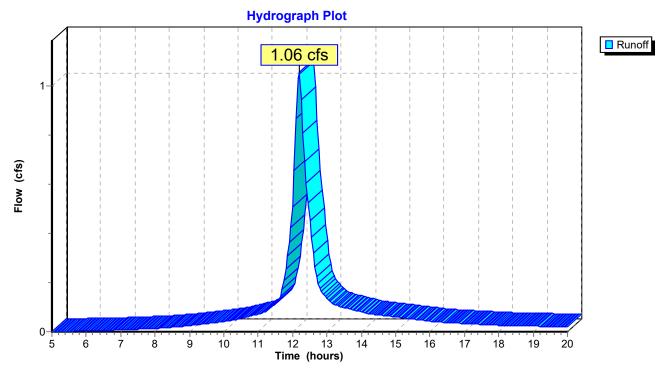

Subcatchment D-2: D-2

Runoff = 0.38 cfs @ 12.09 hrs, Volume= 0.029 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN	Description		
	4,523	98	98 Paved parking & ro Slope Velocity Capac		
Tc (min)	Length (feet)			Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN

Subcatchment D-2: D-2



Subcatchment D-20: D-20

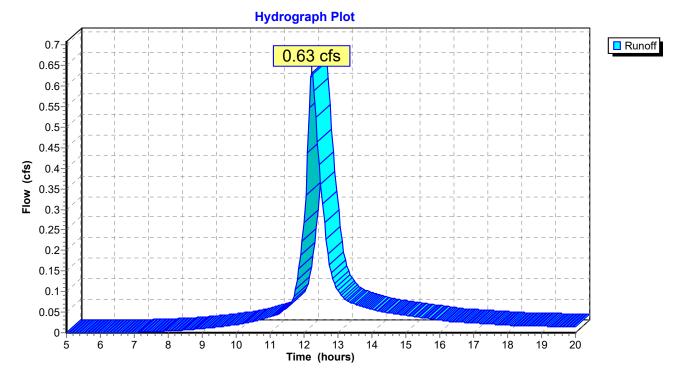
Runoff = 1.06 cfs @ 12.18 hrs, Volume= 0.093 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN I	Description							
	11,110	98 I	Paved park	ing & roofs						
	6,757	80 :	>75% Gras	s cover, Go	bod, HSG D					
	17,867	91	Neighted A	verage						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
11.8	50	0.0100	0.1		Sheet Flow,					
1.6	200	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
13.4	250	Total								
	Subostohment D 20, D 20									

Subcatchment D-20: D-20

Subcatchment D-21: D-21


Page 33 5/26/2021

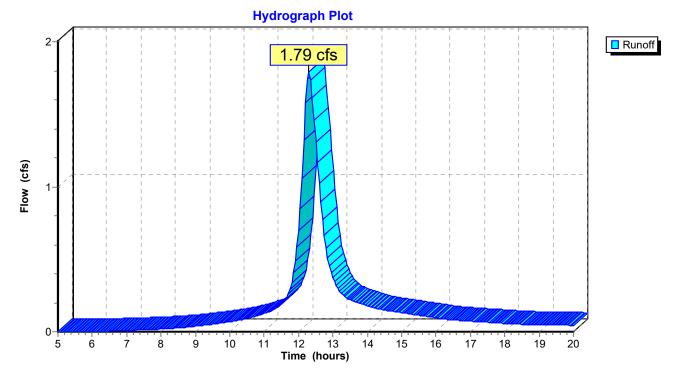
Runoff 0.63 cfs @ 12.23 hrs, Volume= 0.059 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

_	A	rea (sf)	CN	Description					
		5,250	98	Paved road	s w/curbs &	& sewers			
_		7,951	80	(ft) (ft/sec) (cfs) 00 0.1 Sheet Flow, Grass: Dense n= 0.240 P2= 2.70"					
	13,201 87 Weighted Average								
	Tc (min)	Length (feet)	Slope (ft/ft	,		Description			
	16.3	75	0.0100	0.1		Sheet Flow,			
_	0.8	150	0.0250) 3.2		·			
_	17.1	225	Total						

Subcatchment D-21: D-21

Subcatchment D-21A: D-21A

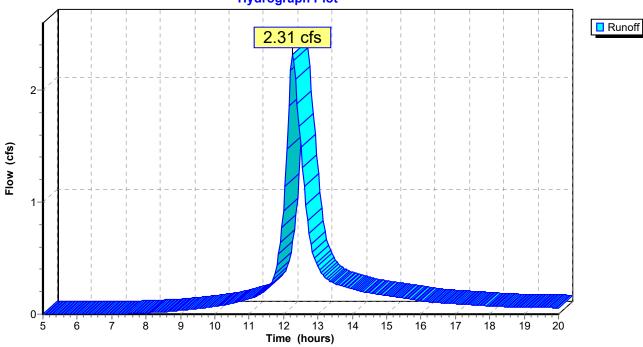

Page 34 5/26/2021

Runoff 1.79 cfs @ 12.30 hrs, Volume= 0.187 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

_	A	rea (sf)	CN	Description			
		19,000	98	Paved park	ing & roofs		
_		19,849	00 98 Paved parking & roofs 19 80 >75% Grass cover, Good, HSG D 19 89 Weighted Average gth Slope Velocity Capacity oth (ft/ft) (ft/sec) (cfs) 00 0.0100 0.1 Sheet Flow, 00 0.0500 4.5 Shallow Concentrated Flow, Paved Kv= 20.3 fps				
		38,849	89	Weighted A	verage		
	Tc (min)	Length (feet)		,		Description	
-	20.5	100	0.0100	0.1		Sheet Flow,	
	1.5	400	0.0500) 4.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow,	
-	22.0	500	Total				

Subcatchment D-21A: D-21A



Runoff 2.31 cfs @ 12.26 hrs, Volume= 0.224 af =

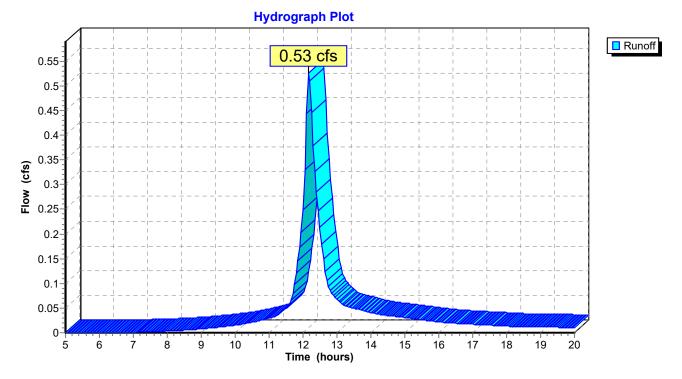
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area	(ac) C	N Desc	cription			
-			ed parking			
0	.810 8	<u>30 >759</u>	% Grass co	over, Good	, HSG D	
1	.196 8	86 Weig	phted Aver	age		
_						
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
17.4	100	0.0150	0.1		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.70"	
0.7	80	0.0150	1.8		Shallow Concentrated Flow,	
					Grassed Waterway Kv= 15.0 fps	
1.0	275	0.0500	4.5		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
19.1	455	Total				

Subcatchment D-21C: D-21C

Hydrograph Plot

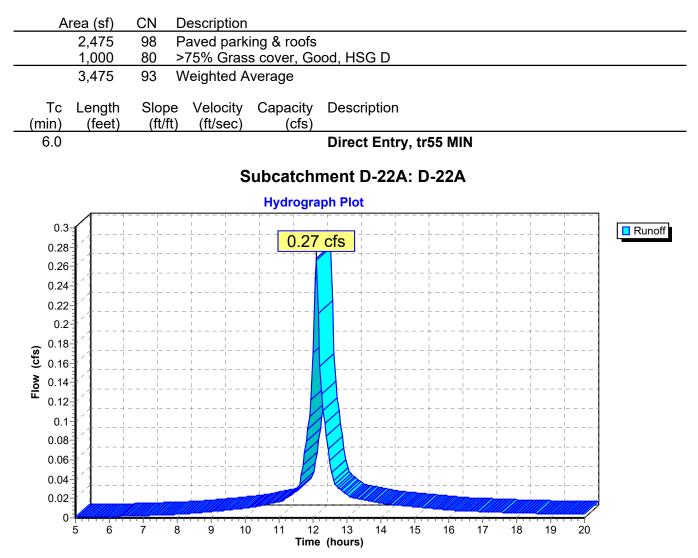
Page 35 5/26/2021


Subcatchment D-22: D-22

Runoff = 0.53 cfs @ 12.17 hrs, Volume= 0.044 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	Area (sf)	CN I	Description			
	4,011	98 I	Paved park	ing & roofs		
	5,702	80 >	>75% Ġras	s cover, Go	ood, HSG D	
	9,713	87 V	Weighted A	verage		
_		<u>.</u> .				
Tc	5	Slope	,	Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
11.8	50	0.0100	0.1		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.70"	
0.5	100	0.0250	3.2		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
12.3	150	Total				

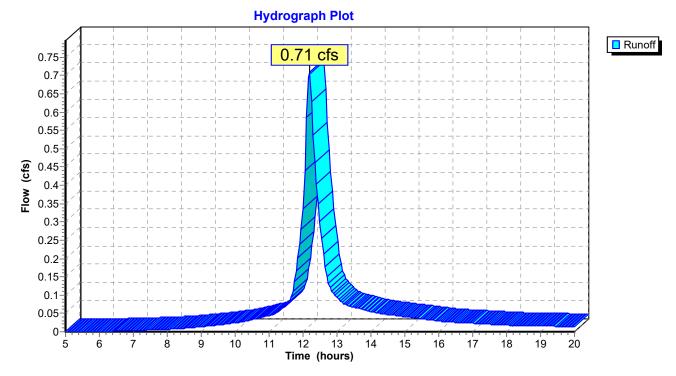

Subcatchment D-22: D-22

Page 37

5/26/2021

Runoff = 0.27 cfs @	12.09 hrs, Volume=	0.019 af
---------------------	--------------------	----------

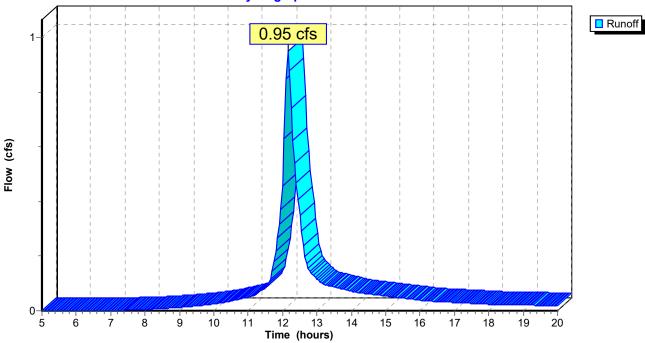
Subcatchment D-23: D-23


Page 38

Runoff 0.71 cfs @ 12.18 hrs, Volume= 0.061 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	vrea (sf)	CN	Description		
	6,000	98	Paved park	ing & roofs	
	6,626	80	>75% Gras	s cover, Go	ood, HSG D
	12,626	89	Weighted A	verage	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.8	50	0.0100	0.1		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.70"
1.3	250	0.0250	3.2		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
13.1	300	Total			


Subcatchment D-23: D-23

Subcatchment D-23A: D-23A

Runoff = 0.95 cfs @ 12.15 hrs, Volume= 0.075 af

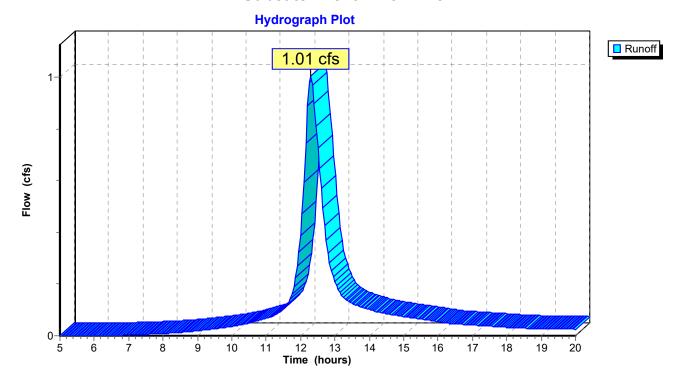
_	Area	(ac) C	N Desc	cription					
	0.	.126 9		ed parking					
_	0.275 80 >75% Grass cover, Good, HSG D								
	0.401 86 Weighted Average								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
	10.5	75	0.0300	0.1		Sheet Flow,			
	0.5	100	0.0250	3.2		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
	11.0	175	Total						
	Subcatchment D-23A: D-23A								

Subcatchment D-24: D-24

Runoff = 1.83 cfs @ 12.29 hrs, Volume= 0.189 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

	Area (sf)	CN	Description			
	20,500	98	Paved park	ing & roofs		
	18,739	80	>75% Ġras	s cover, Go	bod, HSG D	
	39,239	89	Weighted A	verage		
			•	-		
To	Length	Slope	 Velocity 	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
20.5	100	0.0100	0.1		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.70"	
0.9	200	0.0300	3.5		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
21.4	300	Total				

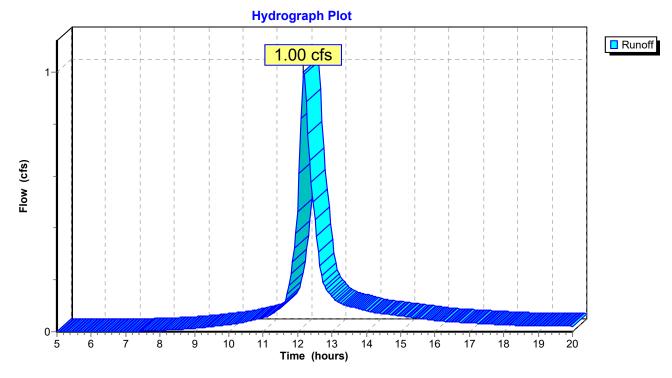

Subcatchment D-24: D-24

Subcatchment D-25: D-25

Runoff = 1.01 cfs @ 12.30 hrs, Volume= 0.104 af

A	vrea (sf)	CN I	Description							
	10,500	98 I	Paved park	ing & roofs						
	11,853	80 >	>75% Gras	s cover, Go	ood, HSG D					
	22,353	88 V	Neighted A	verage						
Tc (min)										
20.5	100	0.0100	0.1		Sheet Flow,					
1.2	150	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
21.7	250	Total								
	Subcatchment D-25: D-25									

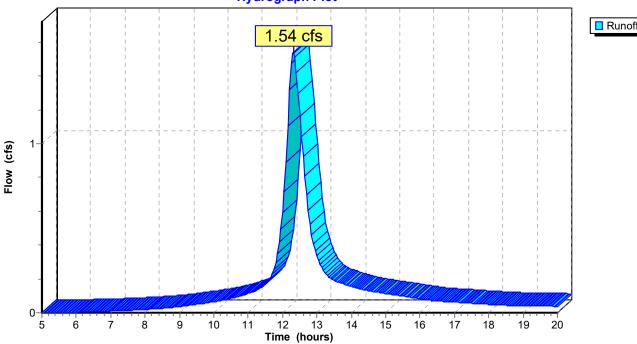
Subcatchment D-25A: D-25A


Page 42

Runoff 1.00 cfs @ 12.18 hrs, Volume= 0.085 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	vrea (sf)	CN [Description		
	7,000	98 F	Paved park	ing & roofs	
	12,613	80 >	>75% Gras	s cover, Go	ood, HSG D
	19,613	86 \	Neighted A	verage	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.8	50	0.0100	0.1		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.70"
1.2	150	0.0100	2.0		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
13.0	200	Total			

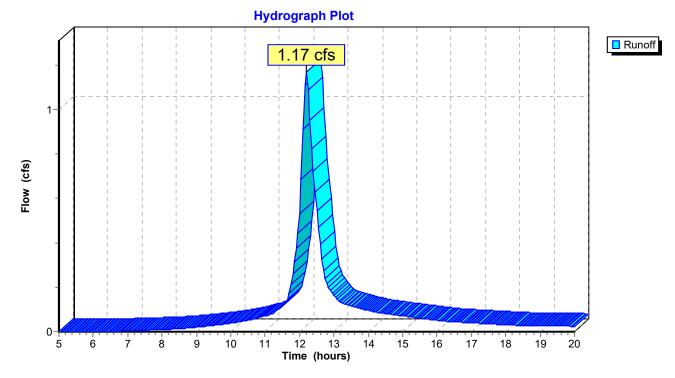

Subcatchment D-25A: D-25A

Subcatchment D-26: D-26

Runoff = 1.54 cfs @ 12.31 hrs, Volume= 0.164 af

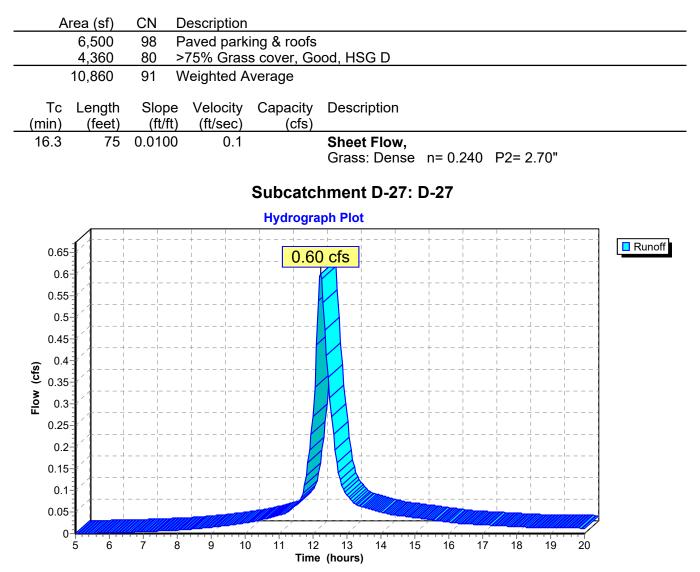
Α	vrea (sf)	CN E	Description		
	17,750			ing & roofs	
	15,108	80 >	75% Gras	s cover, Go	ood, HSG D
	32,858	90 V	Veighted A	verage	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.5	100	0.0100	0.1		Sheet Flow,
2.5	300	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps
23.0	400	Total			
				Subcatcl Hydrogra	hment D-26: D-26 ph Plot
				1.54	Cfs

Subcatchment D-26A: D-26A

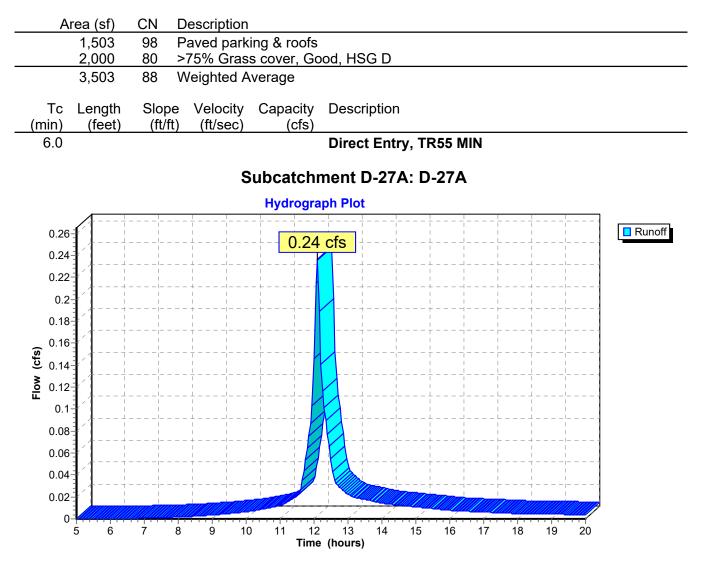

Page 44 5/26/2021

Runoff 1.17 cfs @ 12.20 hrs, Volume= 0.103 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

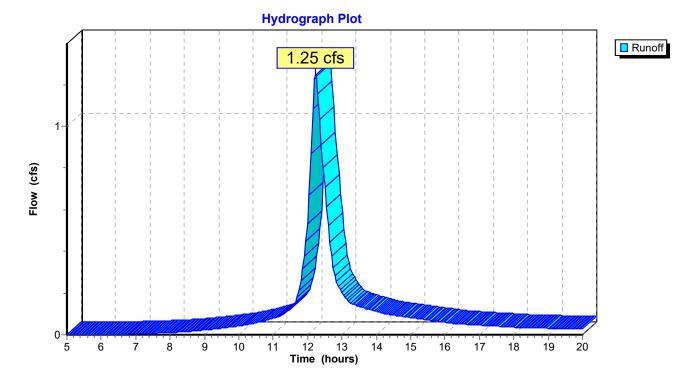

Ar	rea (sf)	CN E	Description			
	9,250	98 F	aved parki	ing & roofs		
	12,827	80 >	75% Grass	s cover, Go	ood, HSG D	
:	22,077	88 V	Veighted A	verage		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
11.8	50	0.0100	0.1		Sheet Flow,	
2.5	300	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
14.3	350	Total				

Subcatchment D-26A: D-26A

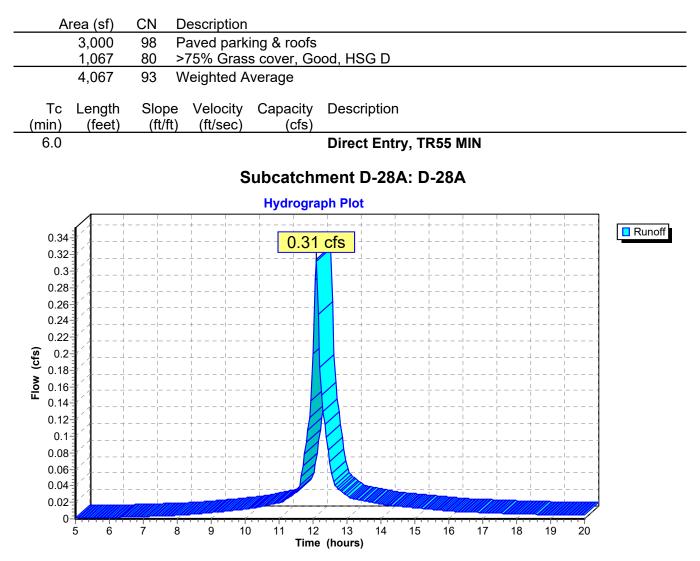

Subcatchment D-27: D-27

Runoff = 0.60 cfs @ 12.22 hrs, Volume= 0.056 af

Subcatchment D-27A: D-27A


Runoff 0.24 cfs @ 12.09 hrs, Volume= = 0.016 af

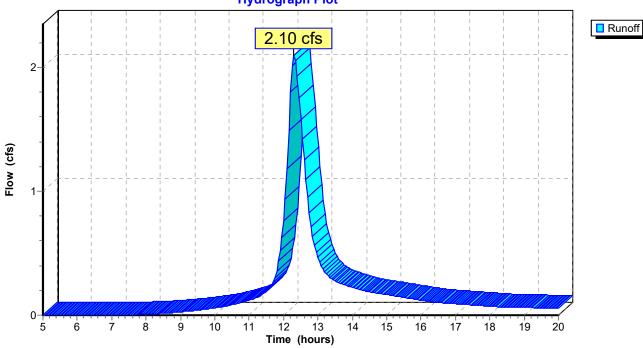
Subcatchment D-28: D-28


Runoff = 1.25 cfs @ 12.23 hrs, Volume= 0.117 af

A	rea (sf)	CN	Description						
	11,000	98	Paved park	ing & roofs					
	14,225	80 3	>75% Gras	s cover, Go	bod, HSG D				
	25,225	88	Weighted A	verage					
Tc (min)									
16.3	75	0.0100	0.1		Sheet Flow,				
0.8	100	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps				
17.1	175	Total							
	Subcatchment D-28: D-28								

Subcatchment D-28A: D-28A

Runoff 0.31 cfs @ 12.09 hrs, Volume= = 0.023 af



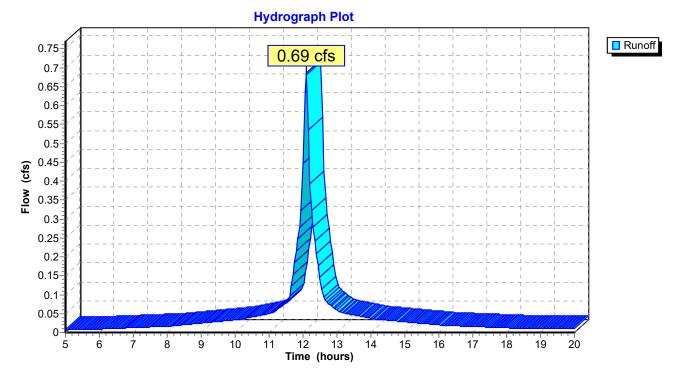
Runoff	=	2.10 cfs @	12.31 hrs, Volume=	0.216 af
--------	---	------------	--------------------	----------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN I	Description		
	15,000	98	Paved road	s w/curbs &	& sewers
	37,267	80 3	>75% Gras	s cover, Go	bod, HSG D
	52,267	85	Neighted A	verage	
			-	-	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
20.5	100	0.0100	0.1		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.70"
1.1	100	0.0100	1.5		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.7	80	0.0100	2.0		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
22.3	280	Total			

Subcatchment D-2OA: D-20A

Hydrograph Plot

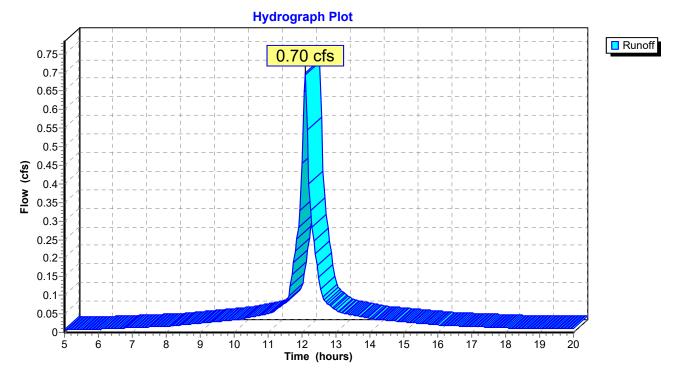

Subcatchment D-3: D-3

Runoff = 0.69 cfs @ 12.09 hrs, Volume= 0.053 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Are	ea (sf)	CN E	Description					
6	8,167	98 F	98 Paved roads w/curbs & sewers					
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, TR55 MIN			

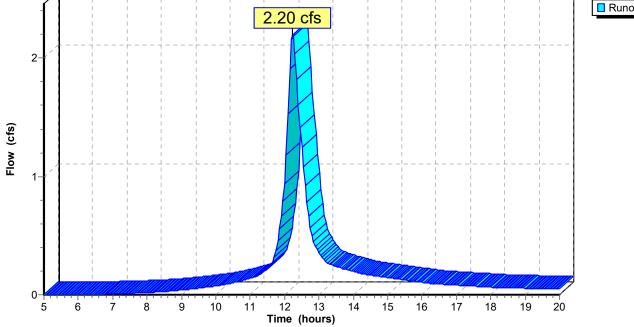
Subcatchment D-3: D-3


Subcatchment D-4: D-4

Runoff = 0.70 cfs @ 12.09 hrs, Volume= 0.054 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN	Description		
	8,318	98			
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN


Subcatchment D-4: D-4

Subcatchment D-6: D-6

Runoff = 2.20 cfs @ 12.23 hrs, Volume= 0.206 af

A	rea (sf)	CN E	Description		
	18,800	98 F	aved park	ing & roofs	
	25,626	80 >	75% Gras	s cover, Go	ood, HSG D
	44,426	88 V	Veighted A	verage	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
16.3	75	0.0100	0.1		Sheet Flow,
0.8	100	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps
17.1	175	Total			
				Subcate Hydrogra	chment D-6: D-6
-				2.20	cfs

Subcatchment D-7: D-7

Page 53

1.35 cfs @ 12.29 hrs, Volume= Runoff 0.139 af =

0

5

7

8

ģ

10

11

12

Time (hours)

13

14

15

16

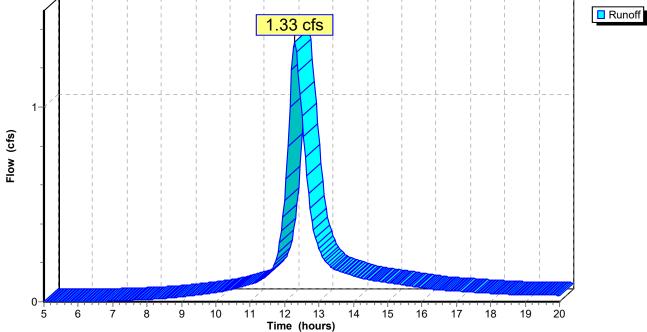
17

18

19

20

6


A	rea (sf)	CN E	Description		
	12,500	98 F	aved park	ing & roofs	
	17,422	80 >	75% Gras	s cover, Go	ood, HSG D
	29,922	88 V	Veighted A	verage	
-				0	
Tc (min)	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	Cheet Flow
20.5	100	0.0100	0.1		Sheet Flow, Grass: Dense n= 0.240 P2= 2.70"
0.9	200	0.0300	3.5		Shallow Concentrated Flow,
0.0			0.0		Paved Kv= 20.3 fps
21.4	300	Total			· · · · · · · · · · · · · · · · · · ·
				Subcate	chment D-7: D-7
				Hydrogra	ph Plot
		i I		1.35	Cfs
-				1.00	
-		I I			
1-					
â		l I			
Flow (cfs)					
Ň					
Ē					

Subcatchment D-7A: D-7A

Page 54

Runoff 1.33 cfs @ 12.29 hrs, Volume= 0.137 af =

	Area (sf)	CN [Description							
	12,500 98 Paved parking & roofs									
17,000 80 >75% Grass cover, Good, HSG D										
	29,500	88 V	Veighted A	verage						
To (min)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
20.5	5 100	0.0100	0.1		Sheet Flow,					
0.9	200	0.0300	3.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
21.4	300	Total								
	Subcatchment D-7A: D-7A Hydrograph Plot									

Subcatchment D-9: D-9

Runoff = 1.97 cfs @ 12.22 hrs, Volume= 0.181 af

6

5

7

8

ģ

10

11

12

Time (hours)

13

14

15

16

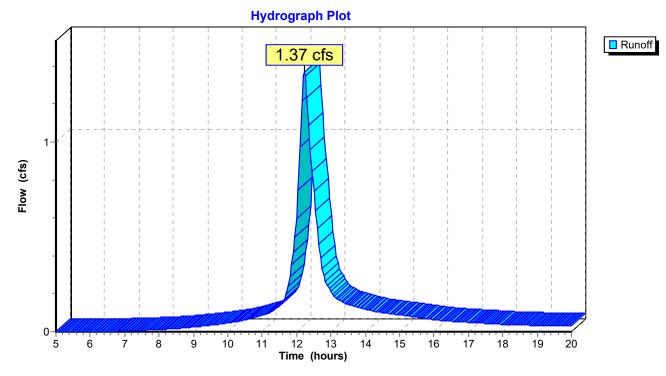
17

18

19

20

A	rea (sf)	CN D	Description		
	16,500	98 F	aved park	ing & roofs	
	22,540	80 >	75% Gras	s cover, Go	ood, HSG D
	39,040	88 V	Veighted A	verage	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Decemption
15.4	70	0.0100	0.1	X_/_	Sheet Flow,
1.0	200	0.0250	3.2		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps
16.4	270	Total			· · · · · · · · · · · · · · · · · · ·
					chment D-9: D-9
		1	1	Hydrogra	iph Plot
		L	· · · · ·	¦ ⊥ 197	Cfs
2-			I I I I		
			I I I I		
			I I I I I I		
-			 		
fs)			 		
-1 (cfs)		· <mark> </mark> ·		· · · · · · · · · · · · · · · · · · ·	
<u>б</u> 1- Ц			I I I I I I		
			I I I I I I		
			I I I I		

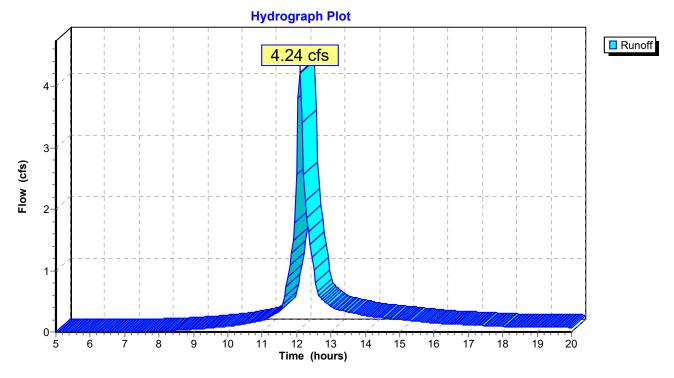

Subcatchment D-9A: CB-9A

Runoff = 1.37 cfs @ 12.22 hrs, Volume= 0.126 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

_	A	rea (sf)	CN	Description							
		12,500	98	98 Paved parking & roofs							
_		14,689	80	>75% Grass cover, Good, HSG D							
		27,189	88	Weighted A	verage						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
_	15.4	70	0.0100	0.1		Sheet Flow,					
	1.0	200	0.0250	3.2		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
-	16.4	270	Total								

Subcatchment D-9A: CB-9A


Subcatchment D-DMH-1: D-DMH-1

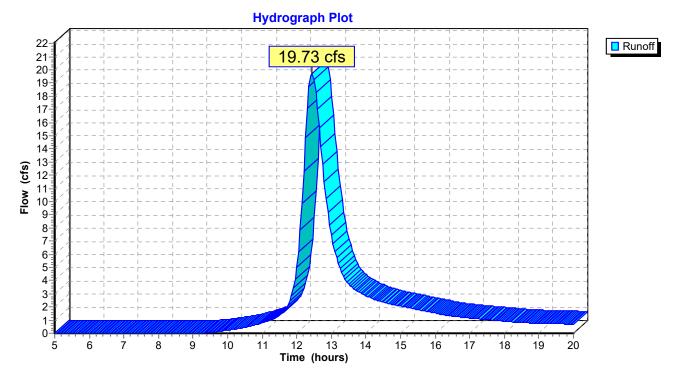
Runoff = 4.24 cfs @ 12.09 hrs, Volume= 0.288 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

 A	rea (sf)	CN	Description							
	18,600	98	98 Paved parking & roofs							
	50,637	80	>75% Gras	s cover, Go	ood, HSG D					
	69,237	85	Weighted A	verage						
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description					
 4.3	40	0.0800	0.2		Sheet Flow,					
					Grass: Dense n= 0.240 P2= 2.70"					
 1.7					Direct Entry, MAKE TR 55 6 MIN MIN					
6.0	40	Total								

Subcatchment D-DMH-1: D-DMH-1

Subcatchment EX-1: EX-1


Runoff = 19.73 cfs @ 12.44 hrs, Volume= 2.317 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

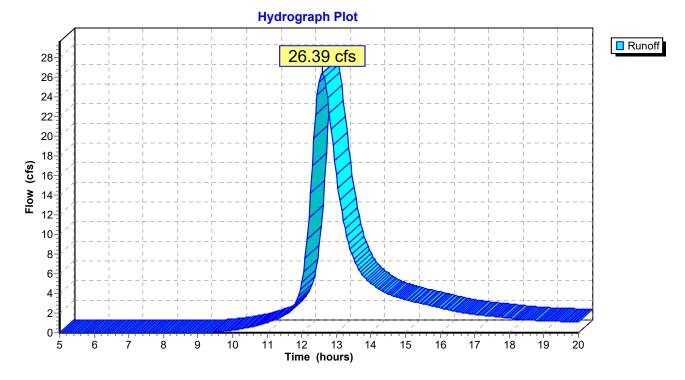
_	Area	(ac) C	N Des	cription				
16.430 79 Woods, Fair, HSG D								
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
-	14.2	100	0.0700	0.1		Sheet Flow,		
	16.4	1,100	0.0500	1.1		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps		

30.6 1,200 Total

Subcatchment EX-1: EX-1

Subcatchment EX-2: EX-2

Page 59 5/26/2021


Runoff 26.39 cfs @ 12.59 hrs, Volume= = 3.582 af

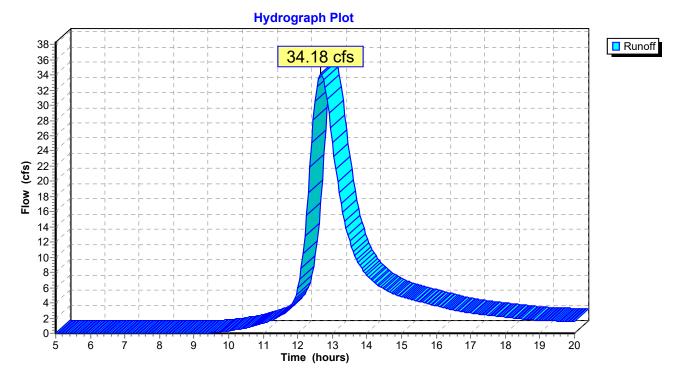
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

_	Area	(ac) C	N Dese	cription		
	25.	510 7	79 Woo	ds, Fair, H	ISG D	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	21.4	100	0.0250	0.1		Sheet Flow,
	47.0	4 0 0 0				Woods: Light underbrush n= 0.400 P2= 2.70"
	17.8	1,000	0.0350	0.9		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	2.4	1,000	0.0350	7.0	35.17	Channel Flow,
_		•				Area= 5.0 sf Perim= 6.0' r= 0.83' n= 0.035
	44.0	0 4 0 0	— · ·			

41.6 2,100 Total

Subcatchment EX-2: EX-2

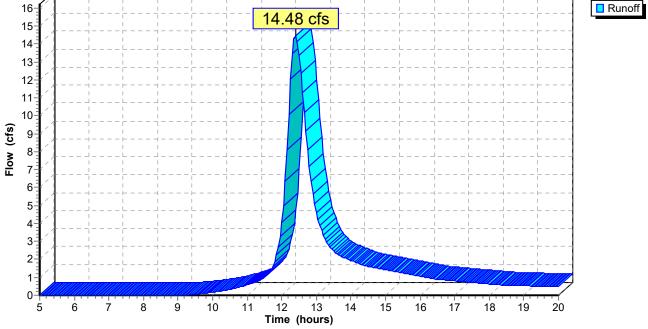
Subcatchment EX-3: EX-3


Runoff = 34.18 cfs @ 12.67 hrs, Volume= 4.974 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area	(ac) C	N Dese	cription					
35.510 79 Woods, Fair, HSG D								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
13.4	100	0.0800	0.1		Sheet Flow,			
34.3	2,300	0.0500	1.1		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps			

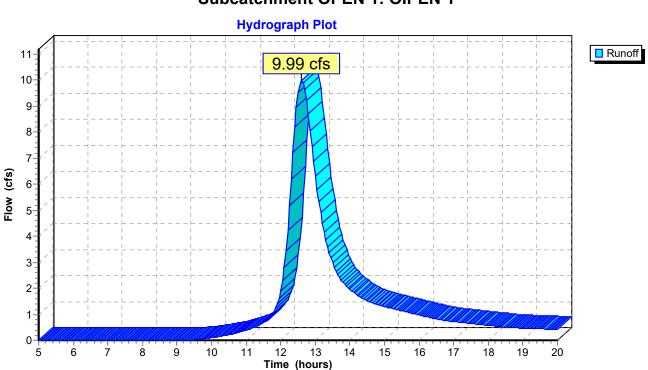
47.7 2,400 Total


Subcatchment EX-3: EX-3

Subcatchment EX-4: EX-4

Runoff = 14.48 cfs @ 12.39 hrs, Volume= 1.620 af

Area	(ac) C	N Des	cription					
11.470 79 Woods, Fair, HSG D								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
21.4	100	0.0250	0.1		Sheet Flow,			
6.0	400	0.0500	1.1		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
27.4	500	Total						
					hment EX-4: EX-4			
				Hydrogra	iph Plot			
16-		L						

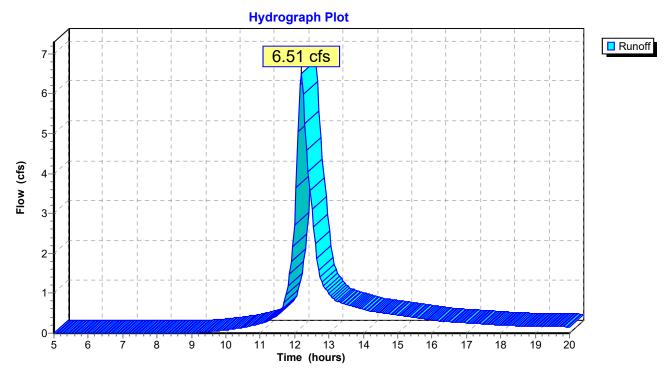

Subcatchment OPEN 1: OIPEN 1

Runoff = 9.99 cfs @ 12.60 hrs, Volume= 1.373 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

	A	rea (sf)	CN	Description		
	4	26,190	79	Woods, Fai	r, HSG D	
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
_	16.2	100	0.0500	0.1		Sheet Flow,
	26.6	1,380	0.0300	0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	40.0	4 400	T ()			

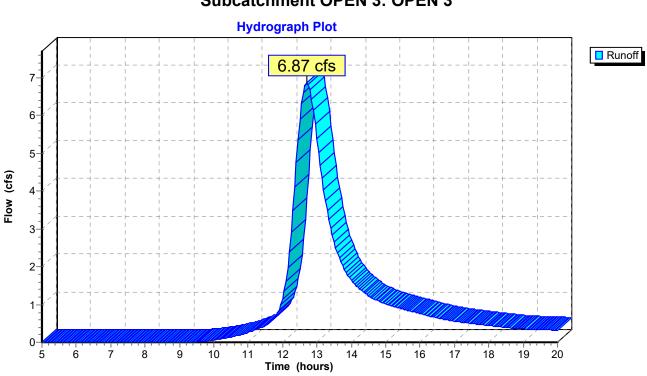
42.8 1,480 Total


Subcatchment OPEN 1: OIPEN 1

Subcatchment OPEN 2: OPEN 2

Runoff = 6.51 cfs @ 12.19 hrs, Volume= 0.550 af

_	A	rea (sf)	CN	Description			_
	1	68,705	79	Woods, Fai	r, HSG D		
_	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
	13.4	100	0.0800) 0.1		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 2.70"	-


Subcatchment OPEN 3: OPEN 3

Runoff = 6.87 cfs @ 12.70 hrs, Volume= 1.028 af

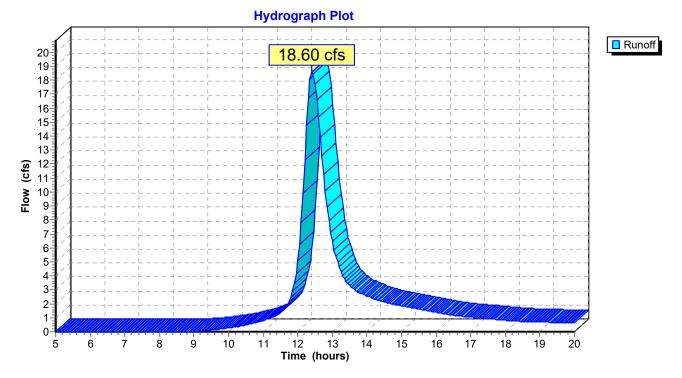
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

	A	rea (sf)	CN	Description		
	3	19,952	79	Woods/gras	ss comb., G	Good, HSG D
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
-	26.2	100	0.0150	0.1		Sheet Flow,
	24.1	885	0.0150	0.6		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	E0 2	005	Tatal			

50.3 985 Total

Subcatchment OPEN 3: OPEN 3

Subcatchment OPEN 4: OPEN 4

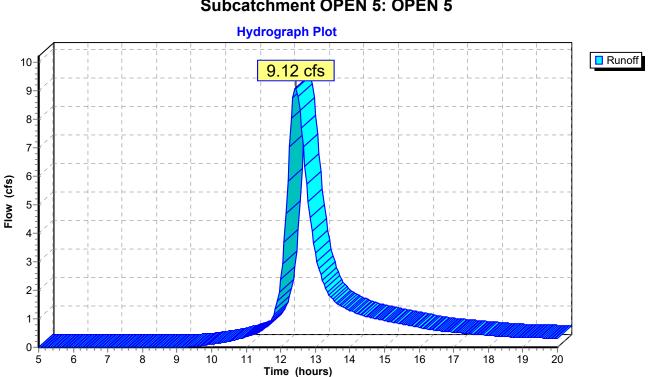

Page 65

Runoff 18.60 cfs @ 12.41 hrs, Volume= 2.138 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

A	rea (sf)	CN I	Description		
6	14,560	79 ۱	Noods, Fai	r, HSG D	
18,300 98 Paved parking & roofs				ing & roofs	
6	632,860 8		Weighted Average		
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
15.1	100	0.0600	0.1		Sheet Flow,
14.1	1,200	0.0800	1.4		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
29.2	1,300	Total			

Subcatchment OPEN 4: OPEN 4


Subcatchment OPEN 5: OPEN 5

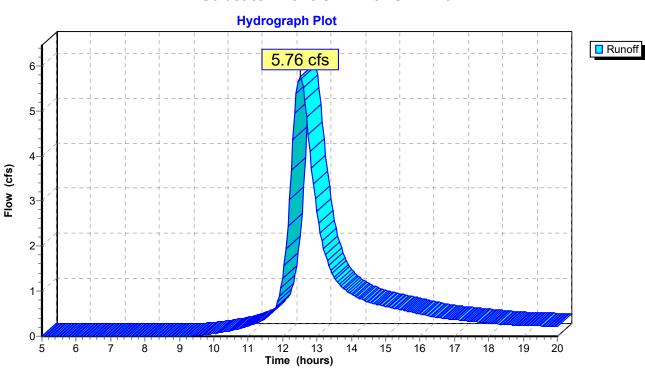
Runoff 9.12 cfs @ 12.42 hrs, Volume= 1.057 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

 A	rea (sf)	CN	Description		
 3	26,510	79	Woods, Fai	r, HSG D	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
 17.7	100	0.0400	0.1	· · · · ·	Sheet Flow,
 12.1	630	0.0300	0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
20.8	730	Total			

29.8 730 Total

Subcatchment OPEN 5: OPEN 5


Subcatchment OPEN 6: OPEN 6

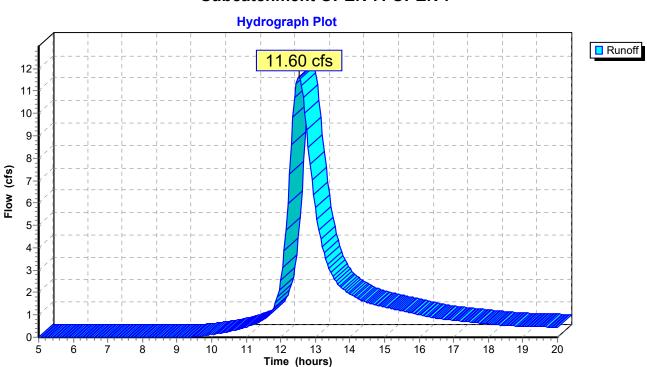
Runoff = 5.76 cfs @ 12.51 hrs, Volume= 0.725 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

	A	rea (sf)	sf) CN	Description		
	2	24,401	01 79	Woods, Fai	r, HSG D	
	Tc (min)	Length (feet)	0		Capacity (cfs)	Description
-	21.4	100	100 0.0250	0.1		Sheet Flow,
	14.3	800	300 0.0350	0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	25.7	000				

35.7 900 Total

Subcatchment OPEN 6: OPEN 6


Subcatchment OPEN 7: OPEN 7

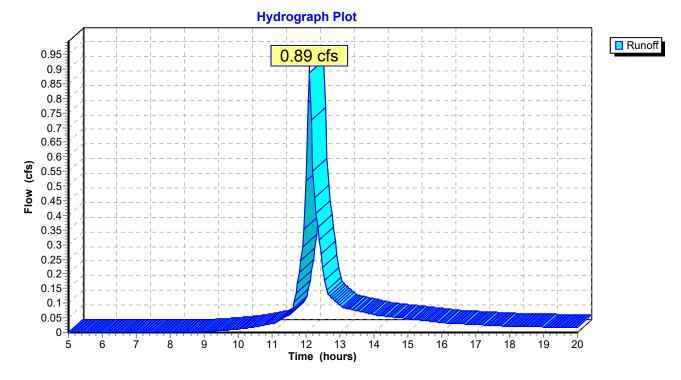
Runoff = 11.60 cfs @ 12.52 hrs, Volume= 1.478 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

_	A	rea (sf)	CN	Description		
	4	57,482	79	Woods, Fai	r, HSG D	
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
_	18.7	100	0.0350	0.1		Sheet Flow,
	17.8	1,000	0.0350	0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
_	<u> </u>	4 4 9 9	— ()			-

36.5 1,100 Total

Subcatchment OPEN 7: OPEN 7

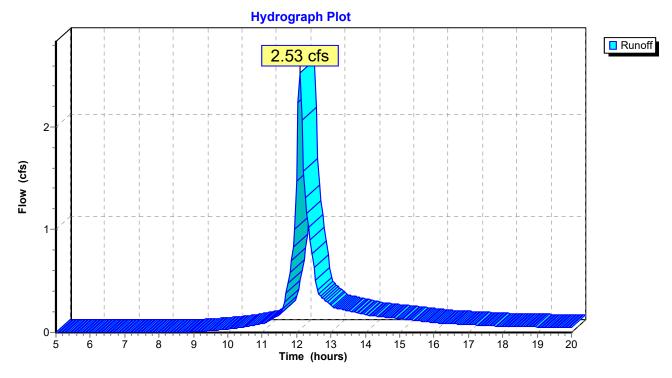

Subcatchment POND 1: POND 1

Runoff = 0.89 cfs @ 12.09 hrs, Volume= 0.060 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area (sf)	CN	Description					
17,554	17,554 80 >75% Grass cover, Good, HSG D						
Tc Length (min) (feet)	Slope (ft/ft		Capacity (cfs)	Description			
6.0				Direct Entry, TR 55 MIN			

Subcatchment POND 1: POND 1

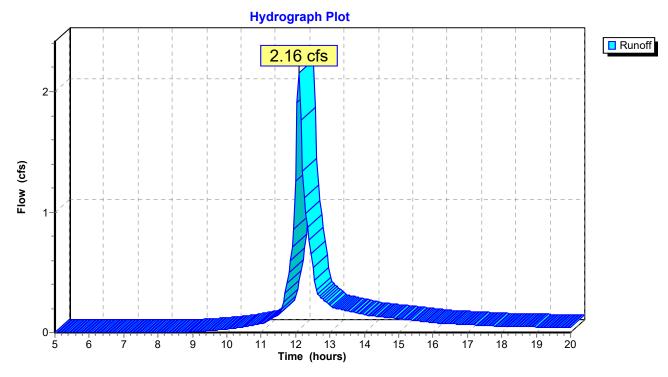

Subcatchment POND 2: POND 2

Runoff = 2.53 cfs @ 12.09 hrs, Volume= 0.170 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area (sf)	CN Description	
49,954	80 >75% Grass cover, Good, HSG D	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, TR55 MIN	

Subcatchment POND 2: POND 2

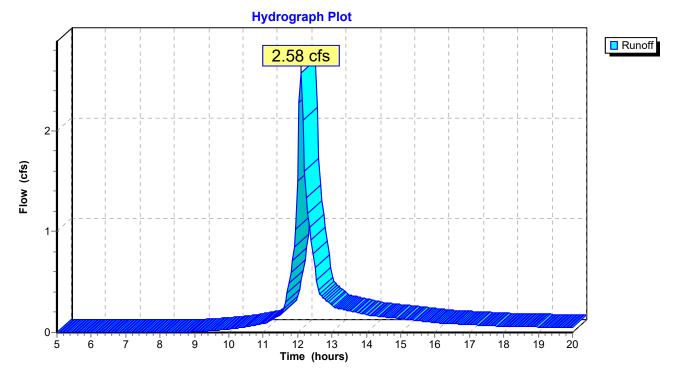

Subcatchment POND 3: POND 3

Runoff = 2.16 cfs @ 12.09 hrs, Volume= 0.146 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area (sf)	CN Description	
42,753	80 >75% Grass cover, Good, HSG D	
Tc Length _(min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, TR55 MIN	

Subcatchment POND 3: POND 3

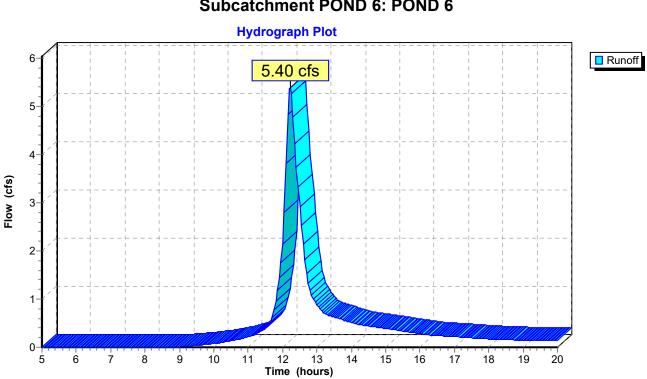

Subcatchment POND 5: POND 5

Runoff = 2.58 cfs @ 12.09 hrs, Volume= 0.174 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

Area (s	f) CN	Description		
50,94	8 80	>75% Grass	s cover, Go	ood, HSG D
Tc Leng (min) (fe	, i		Capacity (cfs)	Description
6.0				Direct Entry, TR55 MIN

Subcatchment POND 5: POND 5


Subcatchment POND 6: POND 6

Runoff 5.40 cfs @ 12.22 hrs, Volume= 0.478 af =

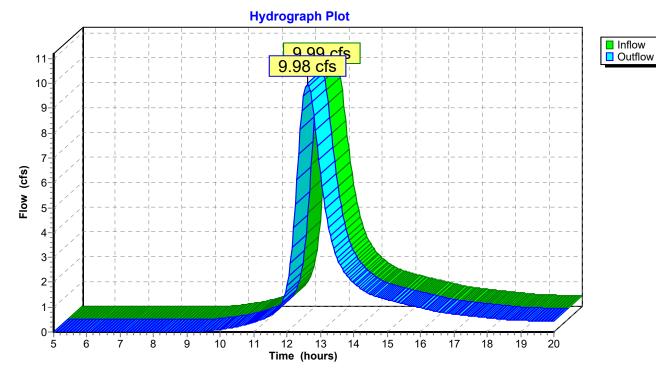
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=3.85"

_	A	rea (sf)	CN	Description		
	1	40,626	80	>75% Gras	s cover, Go	bod, HSG D
	Tc (min)	Length (feet)			Capacity (cfs)	Description
-	14.2	100	0.0250	0.1		Sheet Flow,
	1.2	180	0.0300) 2.6		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
-	15 /	200) Total			

15.4 280 Total

Subcatchment POND 6: POND 6

Reach CULVERT 1: CULVERT 1


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

Inflow	=	9.99 cfs @	12.60 hrs, Volume=	1.373 af
Outflow	=	9.98 cfs @	12.61 hrs, Volume=	1.373 af, Atten= 0%, Lag= 0.2 min

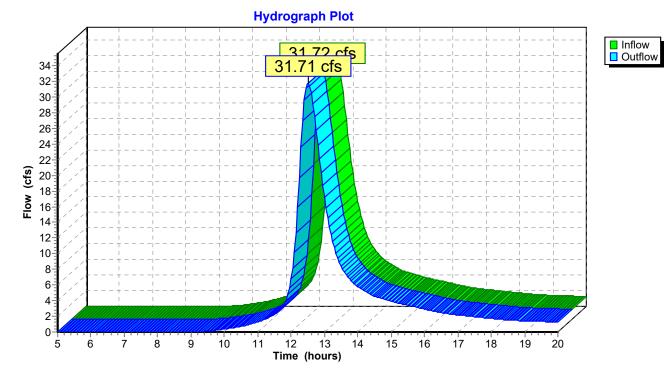
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.1 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.4 fps, Avg. Travel Time= 0.2 min

Peak Depth= 0.72' Capacity at bank full= 108.99 cfs 42.0" Diameter Pipe n= 0.012 Length= 42.0' Slope= 0.0100 '/'

Reach CULVERT 1: CULVERT 1

Atten= 0%, Lag= 0.1 min

Reach CULVERT 2: CULVERT 2


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

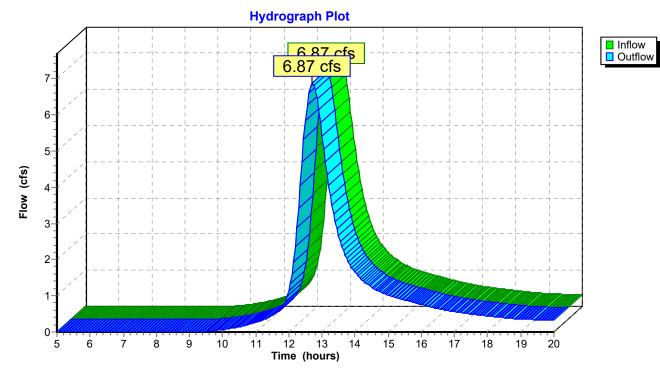
Inflow	=	31.72 cfs @	12.51 hrs, Volume=	4.209 af
Outflow	=	31.71 cfs @	12.51 hrs, Volume=	4.209 af,

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.8 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.8 fps, Avg. Travel Time= 0.2 min

Peak Depth= 1.29' Capacity at bank full= 108.99 cfs 42.0" Diameter Pipe n= 0.012 Length= 46.0' Slope= 0.0100 '/'

Reach CULVERT 2: CULVERT 2

Reach CULVERT 3: CULVERT 3


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

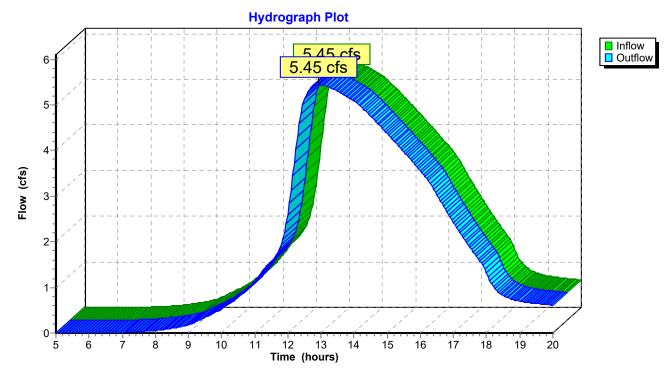
Inflow	=	6.87 cfs @	12.70 hrs, Volume=	1.028 af
Outflow	=	6.87 cfs @	12.71 hrs, Volume=	1.028 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.3 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.2 fps, Avg. Travel Time= 0.2 min

Peak Depth= 0.60' Capacity at bank full= 108.99 cfs 42.0" Diameter Pipe n= 0.012 Length= 42.0' Slope= 0.0100 '/'

Reach CULVERT 3: CULVERT 3

Reach DMH-5 TO OUTLET: DMH-5 TO OUTLET

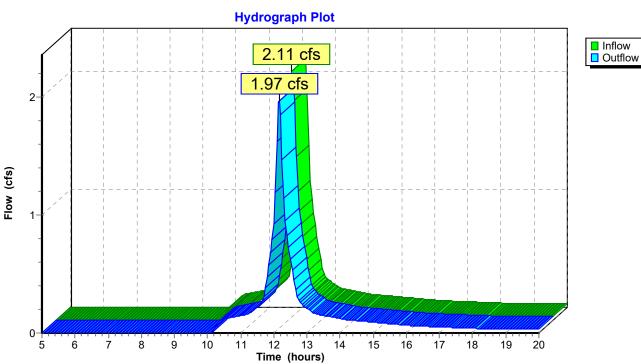

[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

Inflow = 5.45 cfs @ 12.91 hrs, Volume= 2.319 af Outflow = 5.45 cfs @ 12.92 hrs, Volume= 2.317 af, Atten= 0%, Lag= 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.9 fps, Min. Travel Time= 0.7 min Avg. Velocity = 3.0 fps, Avg. Travel Time= 1.1 min

Peak Depth= 0.77' Capacity at bank full= 17.28 cfs 24.0" Diameter Pipe n= 0.012 Length= 193.0' Slope= 0.0050 '/'

Reach DMH-5 TO OUTLET: DMH-5 TO OUTLET


Reach DRY SWALE 1: DRY SWALE 1

[65] Warning: Inlet elevation not specified

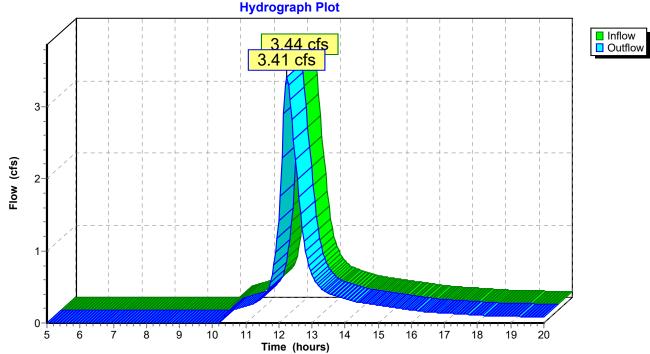
Inflow	=	2.11 cfs @ 12.10 hrs, Vol	ume= 0.141 af
Outflow	=	1.97 cfs @ 12.16 hrs, Vol	ume= 0.141 af, Atten= 6%, Lag= 3.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.0 fps, Min. Travel Time= 2.0 min Avg. Velocity = 0.4 fps, Avg. Travel Time= 5.9 min

Peak Depth= 0.22' Capacity at bank full= 59.21 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 125.0' Slope= 0.0050 '/' Side Slope Z-value= 3.0 '/'

Reach DRY SWALE 1: DRY SWALE 1

Reach DRY SWALE 2: DRY SWALE 2


[65] Warning: Inlet elevation not specified

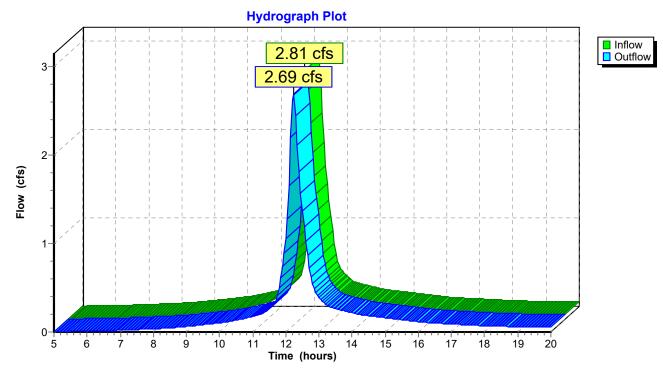
Inflow	=	3.44 cfs @	12.19 hrs, Volume=	0.331 af
Outflow	=	3.41 cfs @	12.25 hrs, Volume=	0.330 af, Atten= 1%, Lag= 3.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.3 fps, Min. Travel Time= 1.8 min Avg. Velocity = 0.5 fps, Avg. Travel Time= 4.7 min

Peak Depth= 0.30' Capacity at bank full= 58.97 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 140.0' Slope= 0.0050 '/' Side Slope Z-value = 3.0 '/'

Reach DRY SWALE 2: DRY SWALE 2

Reach DRY SWALE 3: DRY SWALE 3


[65] Warning: Inlet elevation not specified

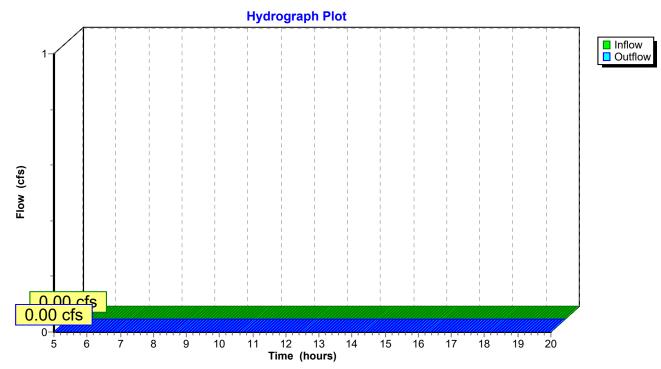
Inflow	=	2.81 cfs @	12.15 hrs, Volume=	0.241 af
Outflow	=	2.69 cfs @	12.24 hrs, Volume=	0.239 af, Atten= 4%, Lag= 5.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.2 fps, Min. Travel Time= 3.2 min Avg. Velocity = 0.4 fps, Avg. Travel Time= 10.2 min

Peak Depth= 0.26' Capacity at bank full= 58.97 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 220.0' Slope= 0.0050 '/' Side Slope Z-value = 3.0 '/'

Reach DRY SWALE 3: DRY SWALE 3

Reach DRY SWALE 4: (new node)


[65] Warning: Inlet elevation not specified

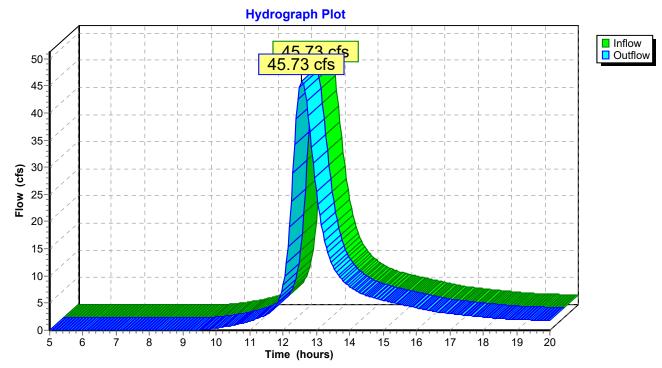
0.000 af Inflow = 0.00 cfs @ 5.00 hrs, Volume= 5.00 hrs, Volume= Outflow 0.00 cfs @ 0.000 af, Atten= 0%, Lag= 0.0 min =

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.0 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.0 fps, Avg. Travel Time= 0.0 min

Peak Depth= 0.00' Capacity at bank full= 58.97 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 140.0' Slope= 0.0050 '/' Side Slope Z-value = 3.0 '/'

Reach DRY SWALE 4: (new node)

Reach EX ANALYSIS A: EX ANALYSIS A


[65] Warning: Inlet elevation not specified

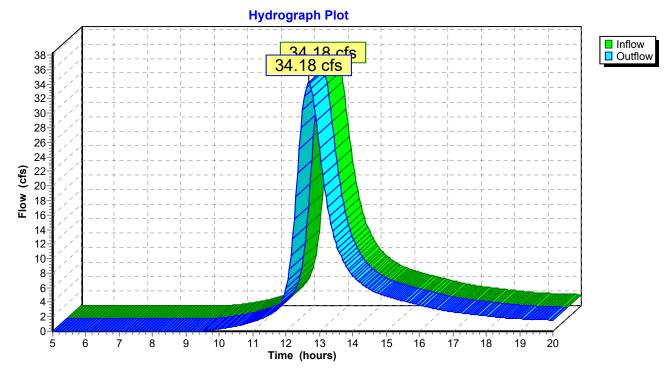
Inflow	=	45.73 cfs @ 12.56 hrs, Volume=	5.887 af
Outflow	=	45.73 cfs @ 12.56 hrs, Volume=	5.886 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.9 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.7 fps, Avg. Travel Time= 0.0 min

Peak Depth= 1.21' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach EX ANALYSIS A: EX ANALYSIS A

Reach EX-ANALYSIS B: EX ANALYSIS B


[65] Warning: Inlet elevation not specified

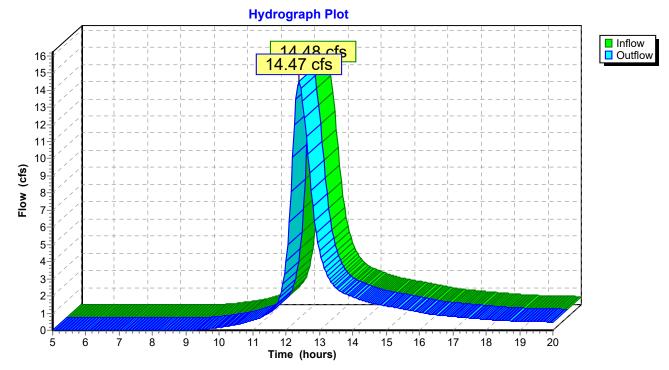
Inflow	=	34.18 cfs @ 12.67 hrs, Volume=	4.974 af
Outflow	=	34.18 cfs @ 12.67 hrs, Volume=	4.974 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.2 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.5 fps, Avg. Travel Time= 0.0 min

Peak Depth= 1.06' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach EX-ANALYSIS B: EX ANALYSIS B

Reach EX-ANALYSIS C: EX-ANALYSIS C


[65] Warning: Inlet elevation not specified

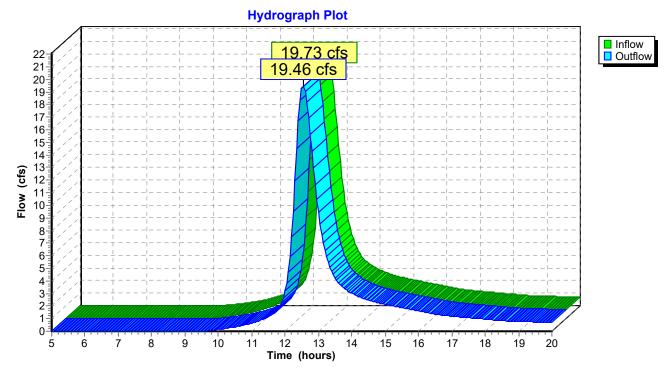
Inflow	=	14.48 cfs @ 12.39 hrs, Volume=	1.620 af
Outflow	=	14.47 cfs @ 12.39 hrs, Volume=	1.619 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.6 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.5 fps, Avg. Travel Time= 0.1 min

Peak Depth= 0.71' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach EX-ANALYSIS C: EX-ANALYSIS C

Reach EX-WETLAND CHANNEL: EX WETLAND CHANNEL 1 TO 2

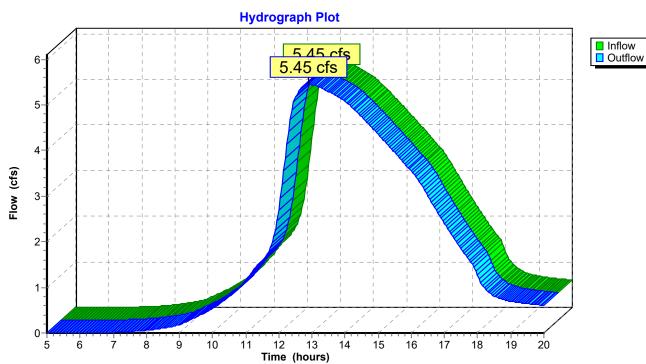

[65] Warning: Inlet elevation not specified

Inflow	=	19.73 cfs @ 12.44 hrs, Volume=	2.317 af
Outflow	=	19.46 cfs @ 12.54 hrs, Volume=	2.304 af, Atten= 1%, Lag= 6.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 5.7 fps, Min. Travel Time= 3.5 min Avg. Velocity = 2.6 fps, Avg. Travel Time= 7.7 min

Peak Depth= 0.86' Capacity at bank full= 66.95 cfs 8.00' x 1.54' deep Parabolic Channel, n= 0.035 Length= 1,200.0' Slope= 0.0400 '/'

Reach EX-WETLAND CHANNEL: EX WETLAND CHANNEL 1 TO 2


Reach OCS-3 TO DMH-5: OCS3 TO DMH5

[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

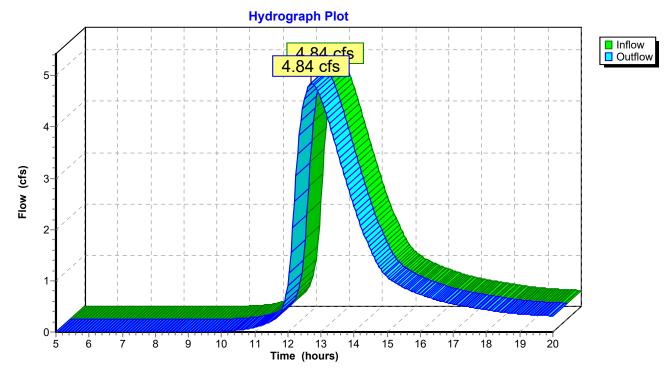
Inflow	=	5.45 cfs @	12.88 hrs, Volum	e= 2.321 af
Outflow	=	5.45 cfs @	12.91 hrs, Volum	e= 2.319 af, Atten= 0%, Lag= 1.8 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.9 fps, Min. Travel Time= 0.9 min Avg. Velocity = 3.0 fps, Avg. Travel Time= 1.5 min

Peak Depth= 0.77' Capacity at bank full= 17.33 cfs 24.0" Diameter Pipe n= 0.012 Length= 274.0' Slope= 0.0050 '/'

Reach OCS-3 TO DMH-5: OCS3 TO DMH5

Reach OCS-4 TO OUTLET: OCS-4 TO OUTLET


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

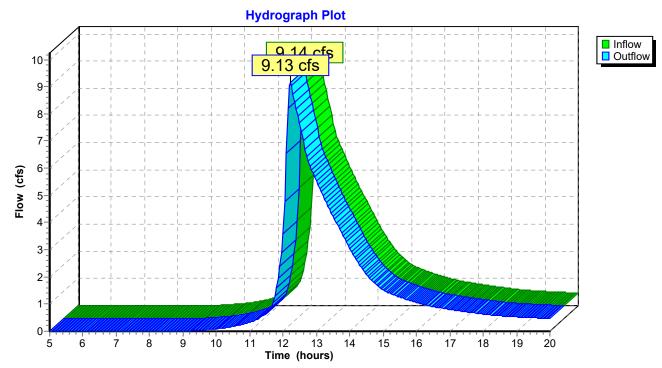
Inflow	=	4.84 cfs @	12.71 hrs,	Volume=	0.991 af
Outflow	=	4.84 cfs @	12.71 hrs,	Volume=	0.991 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.2 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.9 fps, Avg. Travel Time= 0.2 min

Peak Depth= 0.45' Capacity at bank full= 44.02 cfs 24.0" Diameter Pipe n= 0.012 Length= 62.0' Slope= 0.0323 '/'

Reach OCS-4 TO OUTLET: OCS-4 TO OUTLET

Reach P-ANALYISIS C: P-ANALYSIS C


[65] Warning: Inlet elevation not specified

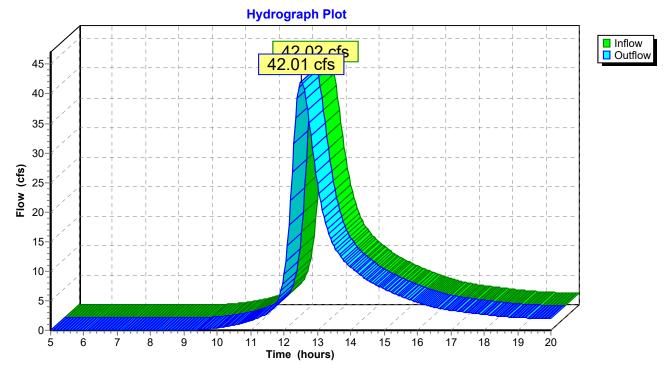
Inflow	=	9.14 cfs @	12.22 hrs, Volume=	1.541 af
Outflow	=	9.13 cfs @	12.22 hrs, Volume=	1.541 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.9 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.5 fps, Avg. Travel Time= 0.1 min

Peak Depth= 0.57' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach P-ANALYISIS C: P-ANALYSIS C

Reach P-ANALYSIS A: P-ANALYSIS A


[65] Warning: Inlet elevation not specified

Inflow	=	42.02 cfs @ 12.51 hrs, Volume=	6.314 af
Outflow	=	42.01 cfs @ 12.51 hrs, Volume=	6.313 af, Atten= 0%, Lag= 0.0 min

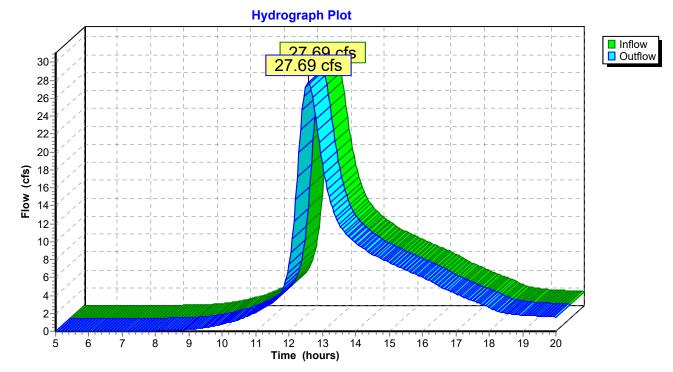
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.7 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.8 fps, Avg. Travel Time= 0.0 min

Peak Depth= 1.16' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach P-ANALYSIS A: P-ANALYSIS A

Page 90 5/26/2021

Reach P-ANALYSIS B: P-ANALYSIS B


[65] Warning: Inlet elevation not specified

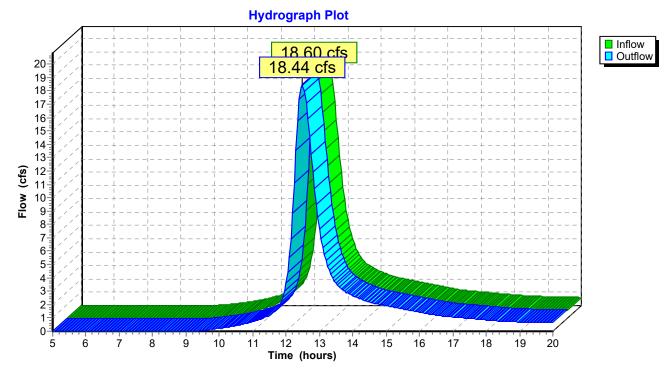
Inflow	=	27.69 cfs @ 12.57 hrs, Volume=	5.532 af
Outflow	=	27.69 cfs @ 12.57 hrs, Volume=	5.532 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.8 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.1 fps, Avg. Travel Time= 0.1 min

Peak Depth= 0.96' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach P-ANALYSIS B: P-ANALYSIS B

Reach P-WETLAND CHANNEL: p WETLAND CHANNEL 1 TO 2


[65] Warning: Inlet elevation not specified

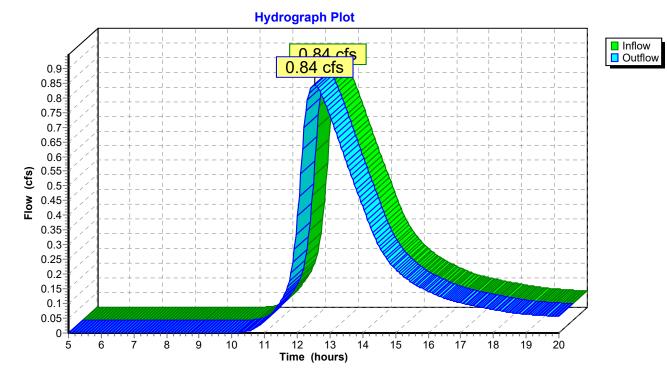
18.60 cfs @ 12.41 hrs, Volume= Inflow = 2.138 af 18.44 cfs @ 12.49 hrs, Volume= Outflow 2.130 af, Atten= 1%, Lag= 4.4 min =

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.0 fps, Min. Travel Time= 2.5 min Avg. Velocity = 2.7 fps, Avg. Travel Time= 5.5 min

Peak Depth= 0.80' Capacity at bank full= 74.86 cfs 8.00' x 1.54' deep Parabolic Channel, n= 0.035 Length= 900.0' Slope= 0.0500 '/'

Reach P-WETLAND CHANNEL: p WETLAND CHANNEL 1 TO 2

Reach POND 1 OUTLET: POND 1 OUTLET


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

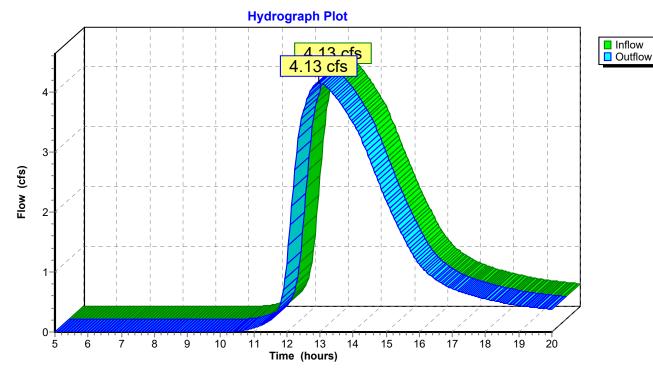
Inflow = 0.84 cfs @ 12.50 hrs, Volume= 0.191 af Outflow = 0.84 cfs @ 12.52 hrs, Volume= 0.191 af, Atten= 0%, Lag= 1.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.1 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.7 fps, Avg. Travel Time= 1.1 min

Peak Depth= 0.38' Capacity at bank full= 2.73 cfs 12.0" Diameter Pipe n= 0.012 Length= 112.0' Slope= 0.0050 '/'

Reach POND 1 OUTLET: POND 1 OUTLET

Reach POND 2 OUTLET: POND 2 OUTLET


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

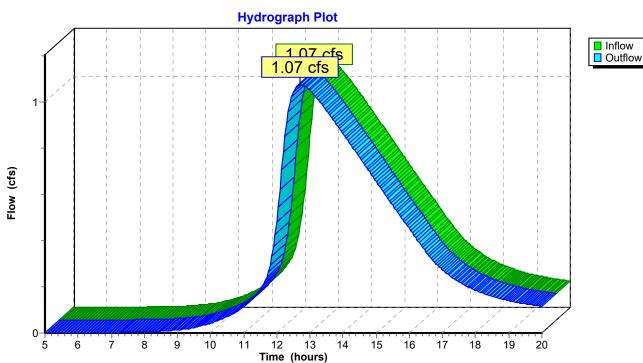
Inflow	=	4.13 cfs @	12.96 hrs, Volume=	1.190 af	
Outflow	=	4.13 cfs @	12.98 hrs, Volume=	1.189 af, Atten= 0%, Lag= 0.7 m	nin

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.5 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.7 fps, Avg. Travel Time= 0.6 min

Peak Depth= 0.66' Capacity at bank full= 17.33 cfs 24.0" Diameter Pipe n= 0.012 Length= 100.0' Slope= 0.0050 '/'

Reach POND 2 OUTLET: POND 2 OUTLET

.6 min


Reach POND 3 OUTLET: POND 3 OUTLET

[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

Inflow	=	1.07 cfs @	12.69 hrs, Volume=	0.364 af	
Outflow	=	1.07 cfs @	12.71 hrs, Volume=	0.364 af, Atten= 0%	, Lag= 1.

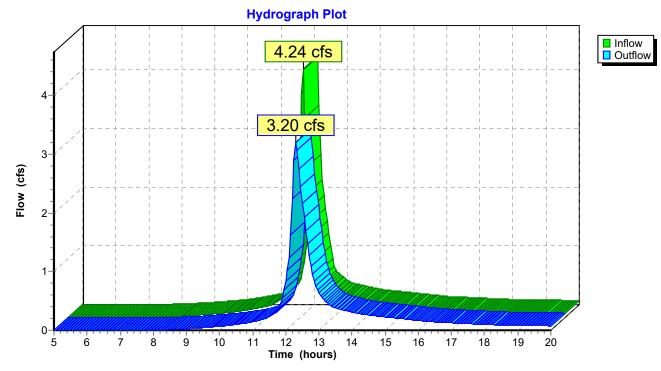
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.3 fps, Min. Travel Time= 0.8 min Avg. Velocity = 1.8 fps, Avg. Travel Time= 1.5 min

Peak Depth= 0.44' Capacity at bank full= 2.74 cfs 12.0" Diameter Pipe n= 0.012 Length= 165.0' Slope= 0.0050 '/'

Reach POND 3 OUTLET: POND 3 OUTLET

Page 95 5/26/2021

Reach SWALE: SWALE


[65] Warning: Inlet elevation not specified

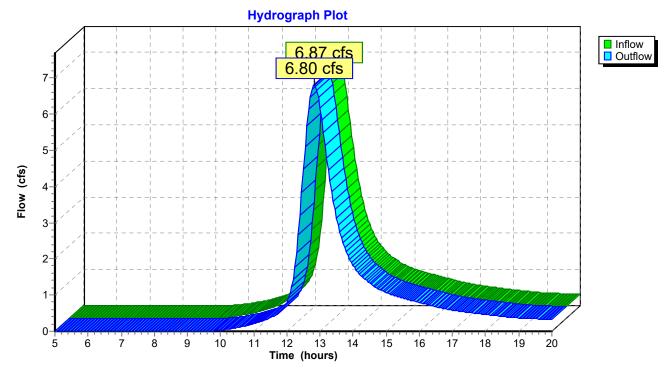
Inflow	=	4.24 cfs @ 12.09 hrs, Volume=	0.288 af
Outflow	=	3.20 cfs @ 12.31 hrs, Volume=	0.285 af, Atten= 24%, Lag= 13.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.1 fps, Min. Travel Time= 8.4 min Avg. Velocity = 0.8 fps, Avg. Travel Time= 21.2 min

Peak Depth= 0.70' Capacity at bank full= 6.90 cfs 4.00' x 1.00' deep Parabolic Channel, n= 0.040 Length= 1,050.0' Slope= 0.0100 '/'

Reach SWALE: SWALE

Reach SWALE FROM CULVERT 3 TO 2: SWALE FROM CULVERT 3 TO 2


[65] Warning: Inlet elevation not specified

Inflow	=	6.87 cfs @	12.71 hrs, Vo	olume=	1.028 af	
Outflow	=	6.80 cfs @	12.82 hrs, Vo	olume=	1.022 af,	Atten= 1%, Lag= 6.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.5 fps, Min. Travel Time= 3.8 min Avg. Velocity = 1.7 fps, Avg. Travel Time= 7.7 min

Peak Depth= 0.71' Capacity at bank full= 32.86 cfs 6.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 800.0' Slope= 0.0200 '/'

Reach SWALE FROM CULVERT 3 TO 2: SWALE FROM CULVERT 3 TO 2

Pond ATTENUATION 1: ATTENUATION POND 1

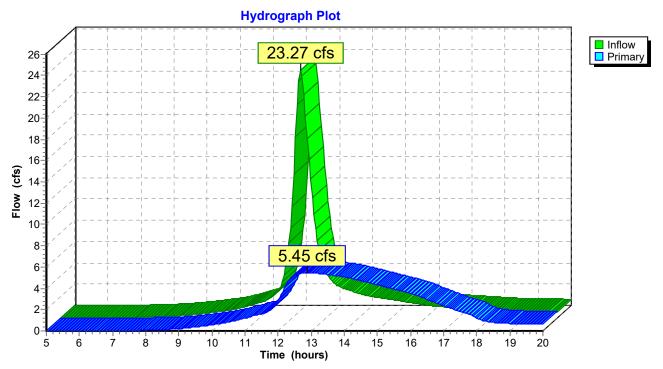
Inflow	=	23.27 cfs @	12.26 hrs, Volume=	2.346 af
Outflow	=	5.45 cfs @	12.88 hrs, Volume=	2.321 af, Atten= 77%, Lag= 37.1 min
Primary	=	5.45 cfs @	12.88 hrs, Volume=	2.321 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 376.63' Storage= 38,937 cf

Plug-Flow detention time= 74.3 min calculated for 2.313 af (99% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
372.33	5,500	0	0
374.00	7,295	10,684	10,684
376.00	11,800	19,095	29,779
378.00	17,108	28,908	58,687
380.00	36,500	53,608	112,295


Primary OutFlow (Free Discharge)

-1=Orifice/Grate

-2=Orifice/Grate

#	Routing	Invert	Outlet Devices
1	Primary	372.33'	10.0" Horiz. Orifice/Grate Limited to weir flow C= 0.600
2	Primary	378.00'	2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

Pond ATTENUATION 1: ATTENUATION POND 1

Pond ATTENUATION BASIN 1: ATTENUATION BASIN 1

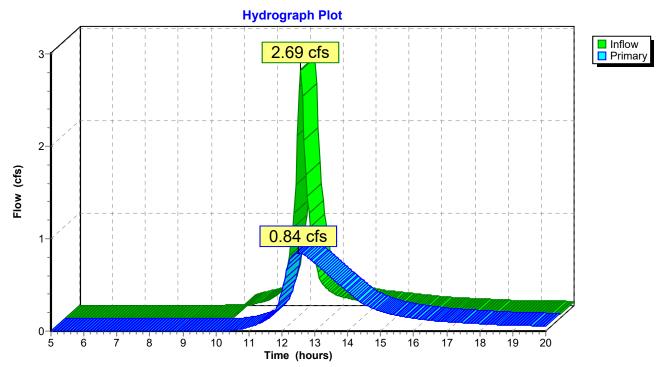
Inflow	=	2.69 cfs @	12.14 hrs, Volume=	0.201 af
Outflow	=	0.84 cfs @	12.50 hrs, Volume=	0.191 af, Atten= 69%, Lag= 21.5 min
Primary	=	0.84 cfs @	12.50 hrs, Volume=	0.191 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 348.05' Storage= 3,303 cf

Plug-Flow detention time= 66.7 min calculated for 0.190 af (95% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
347.00	2,800	0	0
350.00	3,500	9,450	9,450
352.00	5,600	9,100	18,550


Primary OutFlow (Free Discharge)

-1=Orifice/Grate -2=Orifice/Grate

- # Routing Invert Outlet Devices
- 1 Primary 347.00' **6.0" Vert. Orifice/Grate** C= 0.600

2 Primary 350.00' 2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

Pond ATTENUATION BASIN 1: ATTENUATION BASIN 1

Pond ATTENUATION BASIN 2: ATTENUATION BASIN 2

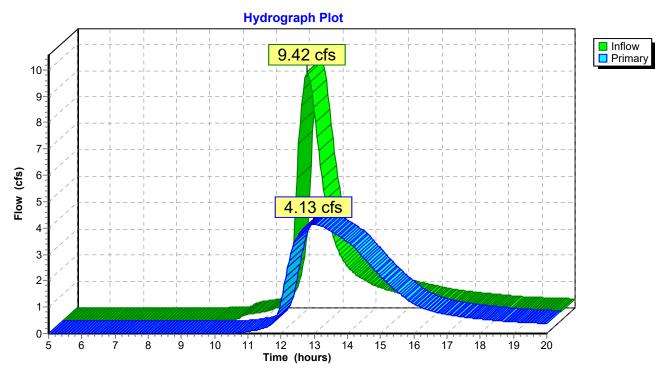
Inflow	=	9.42 cfs @	12.36 hrs, Volume=	1.225 af
Outflow	=	4.13 cfs @	12.96 hrs, Volume=	1.190 af, Atten= 56%, Lag= 36.1 min
Primary	=	4.13 cfs @	12.96 hrs, Volume=	1.190 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 360.89' Storage= 16,300 cf

Plug-Flow detention time= 53.0 min calculated for 1.190 af (97% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
358.00	3,879	0	0
360.00	5,800	9,679	9,679
362.00	9,000	14,800	24,479
364.00	23,500	32,500	56,979


Primary OutFlow (Free Discharge)

-1=Orifice/Grate

-2=Orifice/Grate

-3=Broad-Crested Rectangular Weir

 #	Routing	Invert	Outlet Devices
1	Primary	358.00'	10.0" Vert. Orifice/Grate C= 0.600
2	Primary	361.00'	2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600
3	Primary	362.50'	5.0' long x 4.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.
			Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76

Pond ATTENUATION BASIN 2: ATTENUATION BASIN 2

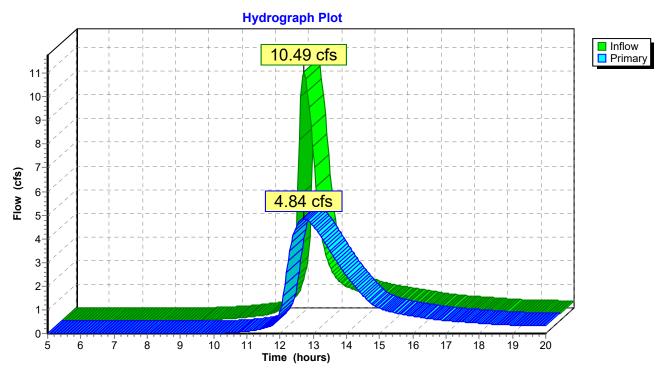
Pond ATTENUATION BASIN 6: ATTENUATION BASIN 6

Inflow	=	10.49 cfs @	12.29 hrs, Volume=	1.013 af
Outflow	=	4.84 cfs @	12.71 hrs, Volume=	0.991 af, Atten= 54%, Lag= 25.0 min
Primary	=	4.84 cfs @	12.71 hrs, Volume=	0.991 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 415.82' Storage= 12,175 cf Plug-Flow detention time= 35.4 min calculated for 0.988 af (98% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
412.00	1,875	0	0
416.00	4,500	12,750	12,750
418.00	9,000	13,500	26,250


Primary OutFlow (Free Discharge)

-1=Orifice/Grate

-2=Orifice/Grate

-3=Broad-Crested Rectangular Weir

#	Routing	Invert	Outlet Devices
1	Primary	412.00'	10.0" Vert. Orifice/Grate C= 0.600
2	Primary	416.50'	2.00' x 2.00' Vert. Orifice/Grate C= 0.600
3	Primary	417.00'	5.0' long x 4.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.
			Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76

Pond ATTENUATION BASIN 6: ATTENUATION BASIN 6

Pond ATTENUATION POND 3: ATTENUATION POND 3

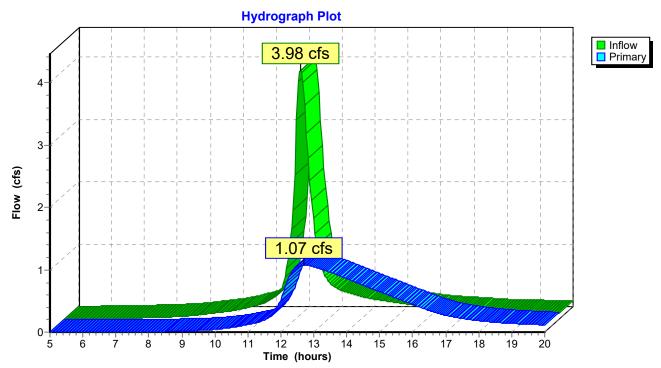
Inflow	=	3.98 cfs @	12.17 hrs, Volume=	0.385 af
Outflow	=	1.07 cfs @	12.69 hrs, Volume=	0.364 af, Atten= 73%, Lag= 30.8 min
Primary	=	1.07 cfs @	12.69 hrs, Volume=	0.364 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 369.54' Storage= 6,933 cf

Plug-Flow detention time= 94.4 min calculated for 0.363 af (94% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
368.00	3,500	0	0
370.00	5,500	9,000	9,000
372.00	10,000	15,500	24,500


Primary OutFlow (Free Discharge)

-1=Orifice/Grate -2=Orifice/Grate

- # Routing Invert Outlet Devices
- 1 Primary 368.00' 6.0" Vert. Orifice/Grate C= 0.600

2 Primary 371.00' 2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

Pond ATTENUATION POND 3: ATTENUATION POND 3

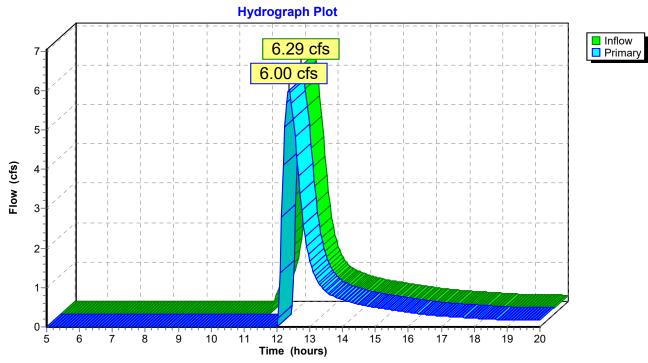
Pond BIO BASIN 2: BIO BASIN 2

[91] Warning: Storage range exceeded by 0.14' [80] Warning: Exceeded Pond PLUNGE 5 by 0.23' @ 19.95 hrs (1.89 cfs)

Inflow	=	6.29 cfs @	12.30 hrs,	Volume=	0.592 af
Outflow	=	6.00 cfs @	12.37 hrs,	Volume=	0.535 af, Atten= 5%, Lag= 4.3 min
Primary	=	6.00 cfs @	12.37 hrs,	Volume=	0.535 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 418.14' Storage= 4,112 cf Plug-Flow detention time= 44.6 min calculated for 0.533 af (90% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
417.25	4,200	0	0
418.00	5.000	3.450	3,450

Primary OutFlow (Free Discharge)

-1=Broad-Crested Rectangular Weir

#	Routing	Invert	Outlet Devices
1	Primary	417.75'	10.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond BIO BASIN 2: BIO BASIN 2

Pond BIORETENTION 1: BIORETENTION BASIN 1

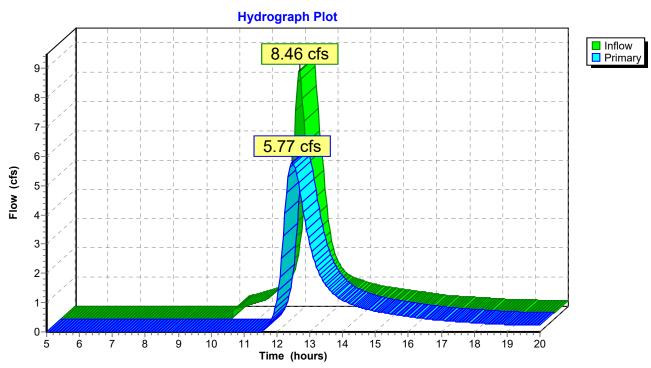
[80] Warning: Exceeded Pond PLUNGE 1 by 0.65' @ 12.80 hrs (11.56 cfs)

Inflow	=	8.46 cfs @ 12.25 hrs, Volume=	0.803 af
Outflow	=	5.77 cfs @ 12.47 hrs, Volume=	0.725 af, Atten= 32%, Lag= 12.9 min
Primary	=	5.77 cfs @ 12.47 hrs, Volume=	0.725 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 362.58' Storage= 10,394 cf

Plug-Flow detention time= 65.6 min calculated for 0.723 af (90% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
361.50	4,800	0	0
362.00	5,200	2,500	2,500
364.00	22,000	27,200	29,700

Primary OutFlow (Free Discharge)

-1=Broad-Crested Rectangular Weir

#	Routing	Invert	Outlet Devices
1	Primary	362.00'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond BIORETENTION 1: BIORETENTION BASIN 1

Pond CB-1: CB-1

[82] Warning: Early inflow requires earlier time span

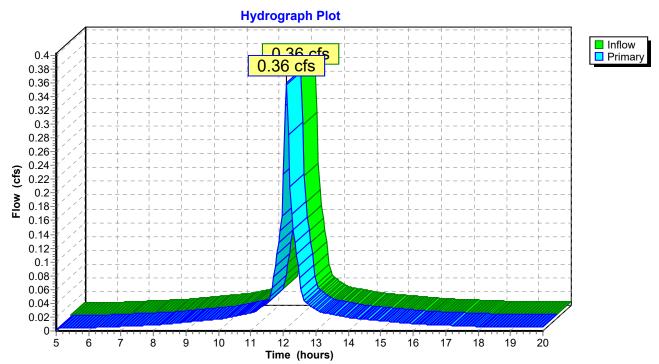
[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

Inflow	=	0.36 cfs @	12.09 hrs,	Volume=	0.027 af
Outflow	=	0.36 cfs @	12.09 hrs,	Volume=	0.027 af, Atten= 0%, Lag= 0.2 min
Primary	=	0.36 cfs @	12.09 hrs,	Volume=	0.027 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 358.10' Storage= 6 cf


Plug-Flow detention time= 1.1 min calculated for 0.027 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
357.75	16	0	0
360.25	16	40	40

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	357.75'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	-		Outlet Invert= 357.63' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-1: CB-1

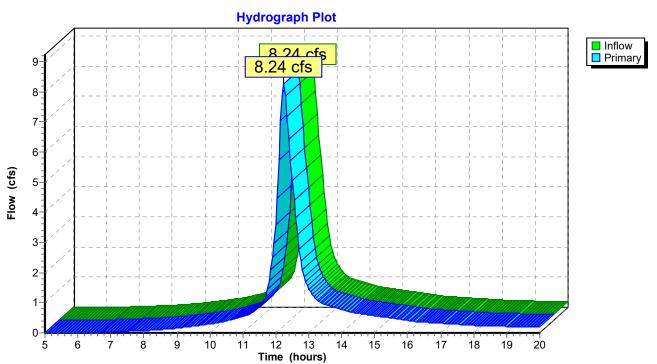
Pond CB-10: CB-10

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-9 Primary device # 1 INLET by 0.34'

Inflow	=	8.24 cfs @	12.24 hrs,	Volume=	0.810 af
Outflow	=	8.24 cfs @	12.24 hrs,	Volume=	0.810 af, Atten= 0%, Lag= 0.0 min
Primary	=	8.24 cfs @	12.24 hrs,	Volume=	0.810 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 370.97' Storage= 21 cf Plug-Flow detention time= 0.1 min calculated for 0.810 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
369.68	16	0	0
373.74	16	65	65

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

369.68' 24.0" x 181.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 364.65' S= 0.0278 '/' n= 0.012 Cc= 0.900

Pond CB-10: CB-10

Pond CB-11: CB-11

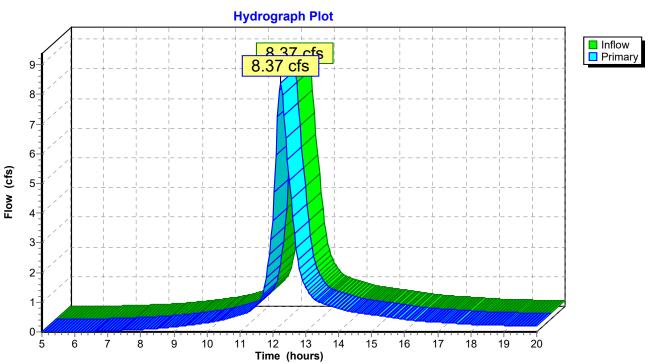
[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-10 Primary device # 1 OUTLET by 1.45'

Inflow	=	8.37 cfs @	12.24 hrs, Volum	e= 0.830 af	
Outflow	=	8.37 cfs @	12.24 hrs, Volum	e= 0.830 af,	Atten= 0%, Lag= 0.0 min
Primary	=	8.37 cfs @	12.24 hrs, Volum	e= 0.830 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 366.10' Storage= 23 cf

Plug-Flow detention time= 0.1 min calculated for 0.827 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
364.64	16	0	0
368.14	16	56	56

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

364.64' 24.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 364.40' S= 0.0100 '/' n= 0.012 Cc= 0.900

Pond CB-11: CB-11

Pond CB-11A: CB-11A

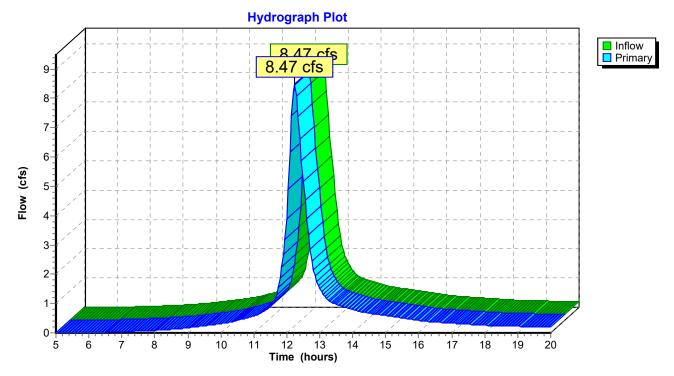
[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-11 Primary device # 1 INLET by 1.20'

Inflow	=	8.47 cfs @	12.24 hrs,	Volume=	0.846 af
Outflow	=	8.47 cfs @	12.24 hrs,	Volume=	0.846 af, Atten= 0%, Lag= 0.0 min
Primary	=	8.47 cfs @	12.24 hrs,	Volume=	0.846 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 365.84' Storage= 23 cf Plug-Flow detention time= 0.1 min calculated for 0.846 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
364.40	16	0	0
368.14	16	60	60


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

364.40' 24.0" x 32.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 364.08' S= 0.0100 '/' n= 0.012 Cc= 0.900

Pond CB-11A: CB-11A

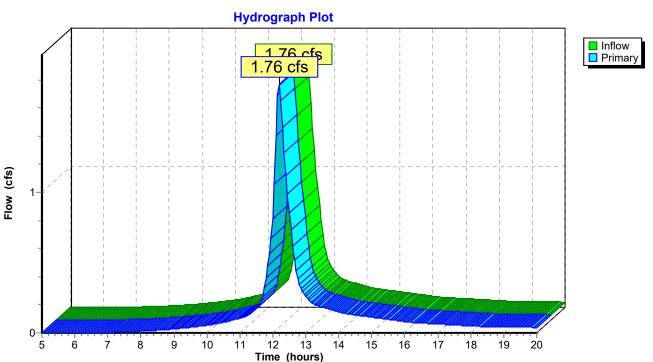
Pond CB-12: CB-12

[88] Warning: Qout>Qin may require Finer Routing>1 [80] Warning: Exceeded Pond CB-12A by 0.04' @ 12.25 hrs (0.36 cfs)

Inflow	=	1.76 cfs @	12.19 hrs,	Volume=	0.157 af
Outflow	=	1.76 cfs @	12.19 hrs,	Volume=	0.157 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.76 cfs @	12.19 hrs,	Volume=	0.157 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 372.72' Storage= 12 cf Plug-Flow detention time= 0.3 min calculated for 0.156 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
372.00	16	0	0
374.68	16	43	43

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

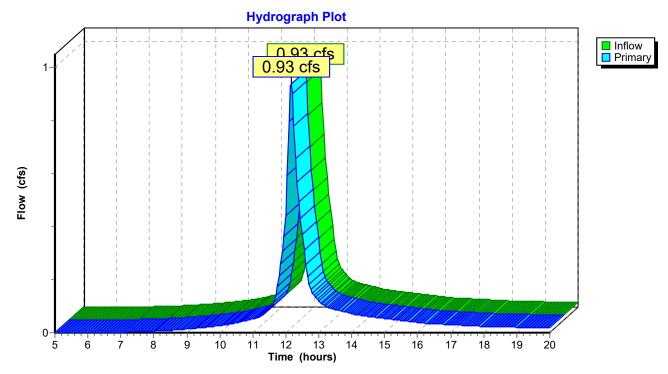
372.00' 12.0" x 136.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 370.40' S= 0.0118 '/' n= 0.012 Cc= 0.900

Pond CB-12: CB-12

Pond CB-12A: CB-12A

Inflow	=	0.93 cfs @ 12.16 hrs, Volume=	0.076 af
Outflow	=	0.93 cfs @ 12.17 hrs, Volume=	0.076 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.93 cfs @ 12.17 hrs, Volume=	0.076 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 372.71' Storage= 9 cf Plug-Flow detention time= 0.5 min calculated for 0.076 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
372.12	16	0	0
374.62	16	40	40

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	372.12'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 372.00' S= 0.0050 '/' n= 0.012 Cc= 0.900

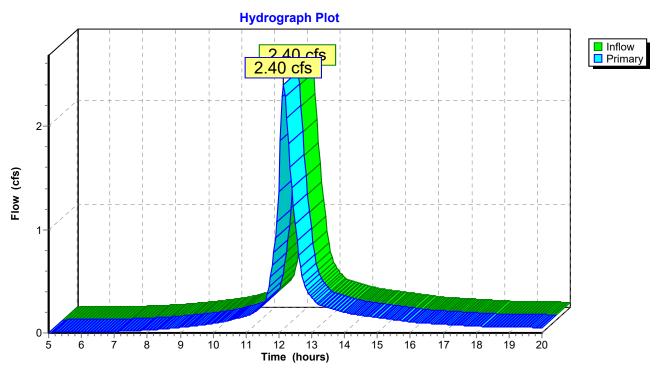
Pond CB-12A: CB-12A

Pond CB-13: CB-13

[88] Warning: Qout>Qin may require Finer Routing>1
[79] Warning: Submerged Pond CB-12 Primary device # 1 OUTLET by 0.89'
[80] Warning: Exceeded Pond CB-13A by 0.35' @ 12.15 hrs (0.98 cfs)

Inflow	=	2.40 cfs @	12.15 hrs, Volume=	0.223 af
Outflow	=	2.40 cfs @	12.15 hrs, Volume=	0.223 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.40 cfs @	12.15 hrs, Volume=	0.223 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 371.29' Storage= 14 cf

Plug-Flow detention time= 0.3 min calculated for 0.223 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
370.39	16	0	0
373.39	16	48	48

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	370.39'	12.0" x 131.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 368.77' S= 0.0124 '/' n= 0.012 Cc= 0.900

Pond CB-13: CB-13

Pond CB-13A: CB-13A

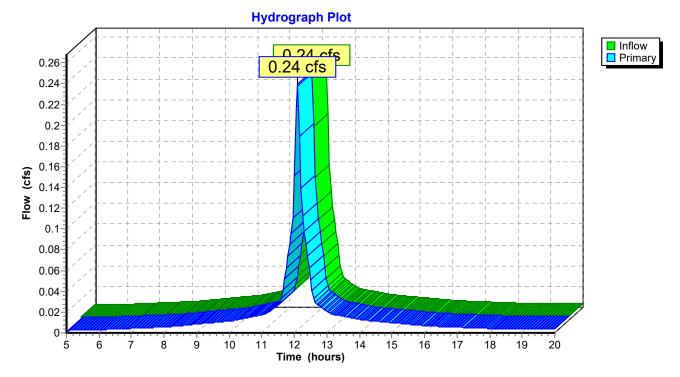
[82] Warning: Early inflow requires earlier time span [88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	0.24 cfs @	12.09 hrs,	Volume=	0.018 af
Outflow	=	0.24 cfs @	12.09 hrs,	Volume=	0.018 af, Atten= 0%, Lag= 0.2 min
Primary	=	0.24 cfs @	12.09 hrs,	Volume=	0.018 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 370.97' Storage= 4 cf Plug-Flow detention time= 1.1 min calculated for 0.018 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
370.73	16	0	0
373.23	16	40	40


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

370.73' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 370.39' S= 0.0142 '/' n= 0.012 Cc= 0.900

Pond CB-13A: CB-13A

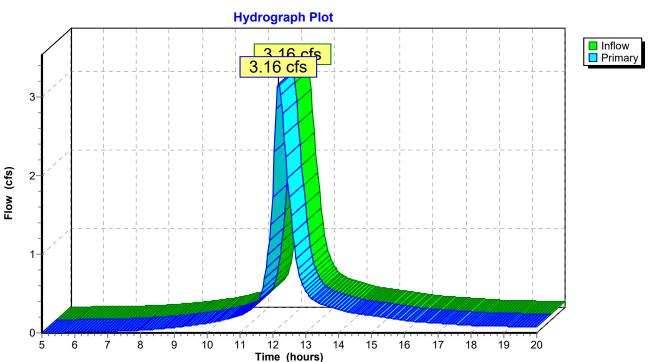
Pond CB-14: CB-14

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-13 Primary device # 1 OUTLET by 0.99'

Inflow	=	3.16 cfs @	12.18 hrs, Volume=	0.319 af
Outflow	=	3.16 cfs @	12.18 hrs, Volume=	0.319 af, Atten= 0%, Lag= 0.1 min
Primary	=	3.16 cfs @	12.18 hrs, Volume=	0.319 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 369.76' Storage= 16 cf Plug-Flow detention time= 0.2 min calculated for 0.319 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
368.76	16	0	0
372.26	16	56	56

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

368.76' 18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 368.64' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-14: CB-14

Pond CB-14A: CB-14A

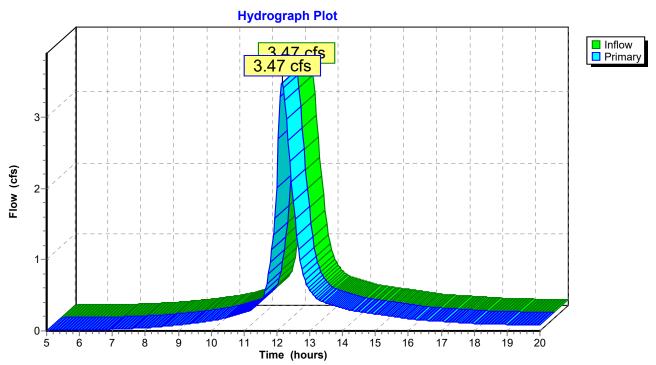
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-14 Primary device # 1 INLET by 0.92'

Inflow	=	3.47 cfs @	12.16 hrs, Volume=	0.353 af
Outflow	=	3.47 cfs @	12.16 hrs, Volume=	0.353 af, Atten= 0%, Lag= 0.0 min
Primary	=	3.47 cfs @	12.16 hrs, Volume=	0.353 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 369.68' Storage= 17 cf

Plug-Flow detention time= 0.2 min calculated for 0.353 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
368.64	16	0	0
372.26	16	58	58

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	368.64'	18.0" x 36.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 368.46' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-14A: CB-14A

Pond CB-15: CB-15

[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-15A Primary device # 1 INLET by 0.26'

Inflow	=	0.56 cfs @	12.14 hrs, Volume=	= 0.049 af
Outflow	=	0.56 cfs @	12.14 hrs, Volume=	= 0.049 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.56 cfs @	12.14 hrs, Volume=	= 0.049 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 390.06' Storage= 6 cf

Plug-Flow detention time= 0.6 min calculated for 0.049 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
389.68	16	0	0
392.30	16	42	42

Primary OutFlow (Free Discharge)

# Routing	Invert	Outlet Devices
1 Primary	389.68'	12.0" x 181.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 380.11' S= 0.0529 '/' n= 0.012 Cc= 0.900

Pond CB-15: CB-15

Page 117 5/26/2021

Pond CB-15A: CB-15A

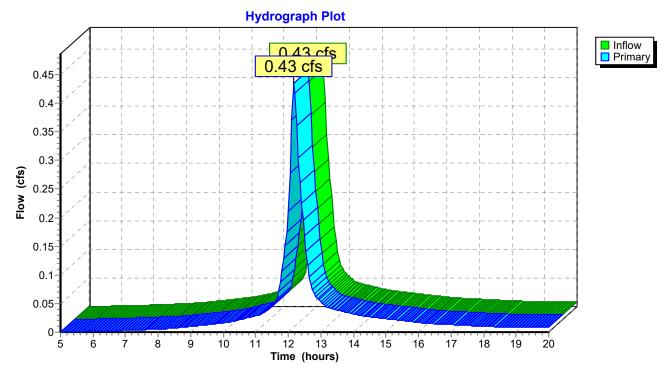
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	0.43 cfs @	12.16 hrs, Volume=	0.037 af
Outflow	=	0.43 cfs @	12.17 hrs, Volume=	0.037 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.43 cfs @	12.17 hrs, Volume=	0.037 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 390.17' Storage= 6 cf

Plug-Flow detention time= 0.7 min calculated for 0.037 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
389.80	16	0	0
392.30	16	40	40

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 389.80' 1 Outlet Invert= 389.68' S= 0.0050 '/' n= 0.010 Cc= 0.900

Pond CB-15A: CB-15A

Pond CB-16: CB-16

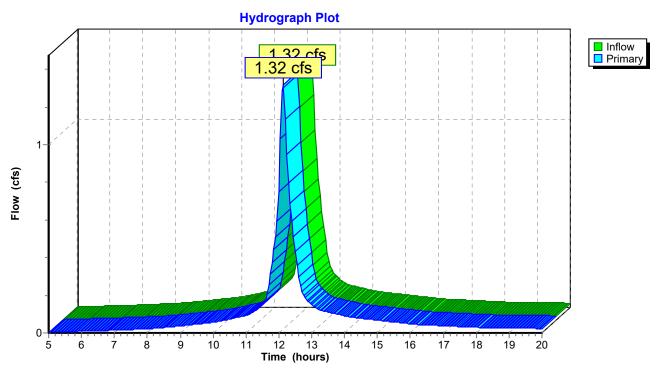
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-15 Primary device # 1 OUTLET by 0.49'

Inflow	=	1.32 cfs @	12.13 hrs, Volume=	0.112 af
Outflow	=	1.32 cfs @	12.13 hrs, Volume=	0.111 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.32 cfs @	12.13 hrs, Volume=	0.111 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 380.61' Storage= 10 cf

Plug-Flow detention time= 0.4 min calculated for 0.111 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
380.00	16	0	0
383.09	16	49	49

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	380.00'	12.0" x 209.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 374.00' S= 0.0287 '/' n= 0.012 Cc= 0.900

Pond CB-16: CB-16

Pond CB-16A: CB-16A

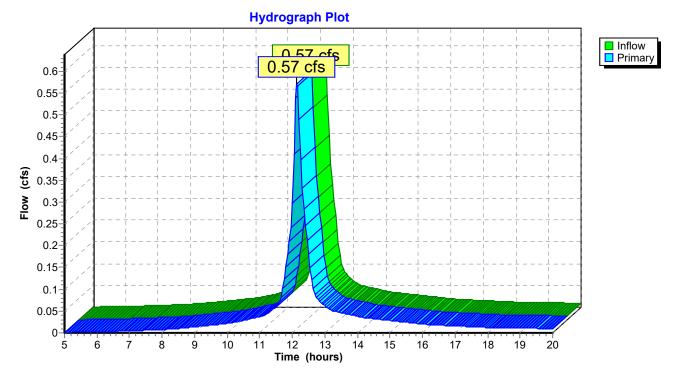
[82] Warning: Early inflow requires earlier time span [88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	0.57 cfs @	12.14 hrs, Volume=	0.046 af
Outflow	=	0.57 cfs @	12.14 hrs, Volume=	0.046 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.57 cfs @	12.14 hrs, Volume=	0.046 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 381.81' Storage= 7 cf Plug-Flow detention time= 0.6 min calculated for 0.045 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
381.40 383.09	16 16	0	0
363.09	10	21	21


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

381.40' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 381.20' S= 0.0083 '/' n= 0.012 Cc= 0.900

Pond CB-16A: CB-16A

Pond CB-17: CB-17

[82] Warning: Early inflow requires earlier time span [79] Warning: Submerged Pond CB-16 Primary device # 1 OUTLET by 0.82'

Inflow	=	1.60 cfs @	12.12 hrs, ∖	√olume=	0.135 af
Outflow	=	1.60 cfs @	12.12 hrs, ∖	√olume=	0.135 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.60 cfs @	12.12 hrs, ∖	√olume=	0.135 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 374.82' Storage= 13 cf Plug-Flow detention time= 0.4 min calculated for 0.134 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
374.01	16	0	0
377.51	16	56	56

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

374.01' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 373.89' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-17: CB-17

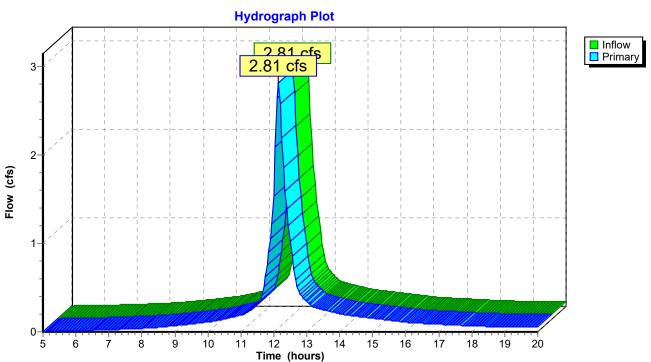
Pond CB-17A: CB-17A

[85] Warning: Oscillations may require Finer Routing>1 [80] Warning: Exceeded Pond CB-17 by 0.29' @ 12.15 hrs (2.04 cfs)

Inflow	=	2.81 cfs @	12.14 hrs, Volume=	0.241 af
Outflow	=	2.81 cfs @	12.15 hrs, Volume=	0.241 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.81 cfs @	12.15 hrs, Volume=	0.241 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 375.10' Storage= 19 cf Plug-Flow detention time= 0.3 min calculated for 0.241 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
373.89	16	0	0
377.57	16	59	59

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

373.89' 12.0" x 93.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 373.43' S= 0.0049 '/' n= 0.012 Cc= 0.900

Pond CB-17A: CB-17A

Pond CB-18: CB-18

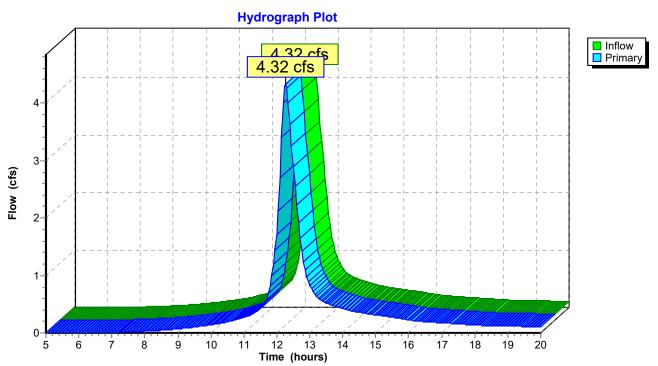
[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-18A Primary device # 1 INLET by 0.39'

Inflow	=	4.32 cfs @	12.27 hrs, Volume=	0.429 af
Outflow	=	4.32 cfs @	12.27 hrs, Volume=	0.429 af, Atten= 0%, Lag= 0.0 min
Primary	=	4.32 cfs @	12.27 hrs, Volume=	0.429 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 417.95' Storage= 16 cf

Plug-Flow detention time= 0.2 min calculated for 0.428 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
416.94	16	0	0
420.56	16	58	58

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

416.94' 18.0" x 345.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 412.97' S= 0.0115 '/' n= 0.012 Cc= 0.900

Pond CB-18: CB-18

Pond CB-18A: CB-18A AND B

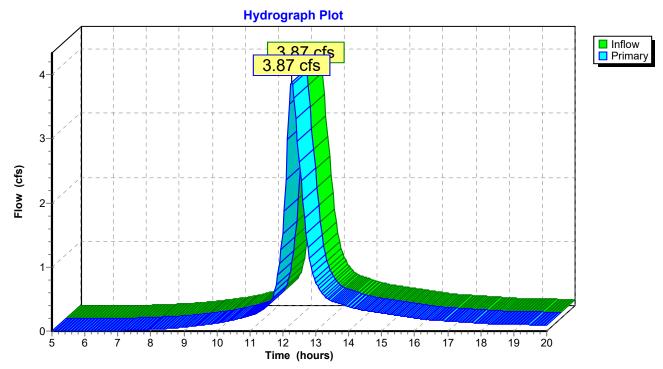
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	3.87 cfs @	12.28 hrs, Volume=	0.387 af
Outflow	=	3.87 cfs @	12.28 hrs, Volume=	0.387 af, Atten= 0%, Lag= 0.1 min
Primary	=	3.87 cfs @	12.28 hrs, Volume=	0.387 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 418.69' Storage= 18 cf

Plug-Flow detention time= 0.2 min calculated for 0.387 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
417.59	16	0	0
420.56	16	48	48

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

417.56' 18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 417.44' S= 0.0050 '/' n= 0.012 Cc= 0.900

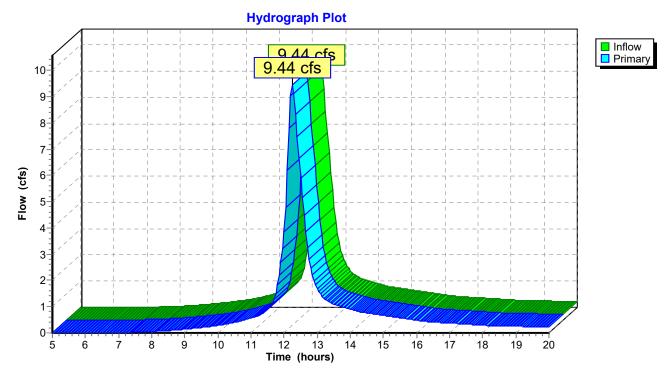
Pond CB-18A: CB-18A AND B

Pond CB-19: CB-19

[88] Warning: Qout>Qin may require Finer Routing>1
[79] Warning: Submerged Pond CB-18 Primary device # 1 OUTLET by 0.80'
[79] Warning: Submerged Pond CB-19A Primary device # 1 OUTLET by 0.30'

Inflow	=	9.44 cfs @	12.25 hrs, Volume=	0.910 af
Outflow	=	9.44 cfs @	12.25 hrs, Volume=	0.910 af, Atten= 0%, Lag= 0.0 min
Primary	=	9.44 cfs @	12.25 hrs, Volume=	0.910 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 413.77' Storage= 22 cf

Plug-Flow detention time= 0.1 min calculated for 0.910 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
412.37	16	0	0
416.47	16	66	66

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	412.37'	24.0" x 228.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 409 25', S= 0.0137 '/', n= 0.012, Cc= 0.900

Pond CB-19: CB-19

Pond CB-19A: CB-19A

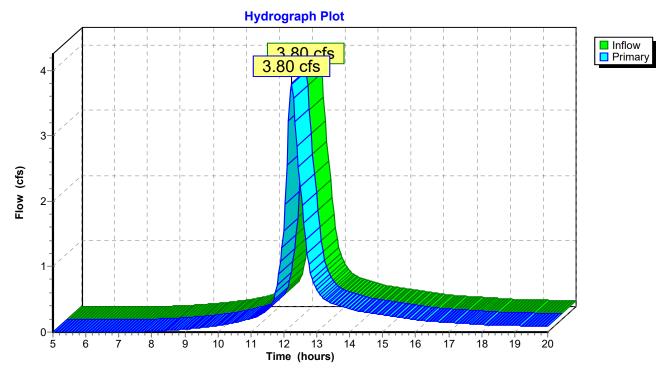
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	3.80 cfs @	12.24 hrs, Volume=	0.354 af
Outflow	=	3.80 cfs @	12.24 hrs, Volume=	0.354 af, Atten= 0%, Lag= 0.0 min
Primary	=	3.80 cfs @	12.24 hrs, Volume=	0.354 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 415.90' Storage= 15 cf

Plug-Flow detention time= 0.2 min calculated for 0.354 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
414.97	16	0	0
416.64	16	27	27

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

414.97' 18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 413.47' S= 0.0625 '/' n= 0.012 Cc= 0.900

Pond CB-19A: CB-19A

Pond CB-2: CB-2

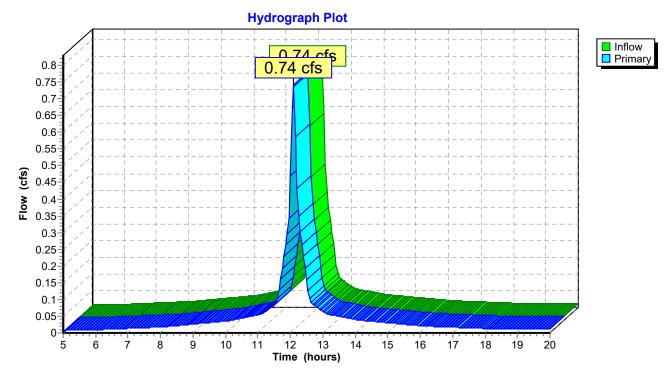
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-1 Primary device # 1 INLET by 0.31'

Inflow	=	0.74 cfs @	12.09 hrs, Volume=	0.057 af
Outflow	=	0.74 cfs @	12.09 hrs, Volume=	0.057 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.74 cfs @	12.09 hrs, Volume=	0.057 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 358.07' Storage= 7 cf Plug-Flow detention time= 0.6 min calculated for 0.057 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
357.63	16	0	0
360.25	16	42	42

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	357.63'	12.0" x 114.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 354 51' S= 0 0274 '/' n= 0 012 Cc= 0 900

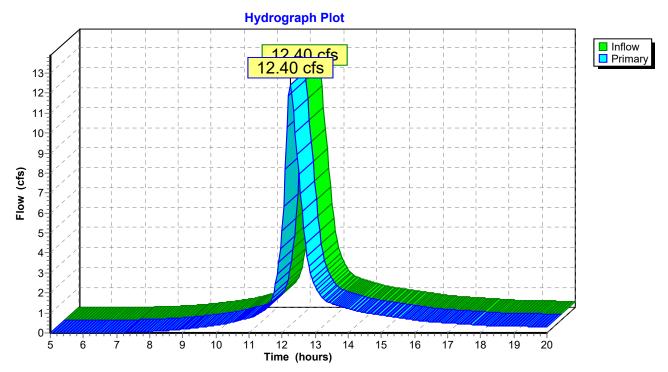
Pond CB-2: CB-2

Pond CB-20: CB-20

[88] Warning: Qout>Qin may require Finer Routing>1
[79] Warning: Submerged Pond CB-19 Primary device # 1 OUTLET by 1.68'
[79] Warning: Submerged Pond CB-20A Primary device # 1 INLET by 0.43'

Inflow	=	12.40 cfs @	12.25 hrs,	Volume=	1.219 af
Outflow	=	12.40 cfs @	12.25 hrs,	Volume=	1.219 af, Atten= 0%, Lag= 0.0 min
Primary	=	12.40 cfs @	12.25 hrs,	Volume=	1.219 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 410.93' Storage= 27 cf

Plug-Flow detention time= 0.1 min calculated for 1.219 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
409.25	16	0	0
412.75	16	56	56

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	409.25'	24.0" x 170.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 405.65' S= 0.0212 '/' n= 0.012 Cc= 0.900

Pond CB-20: CB-20

Pond CB-20A: CB-20A

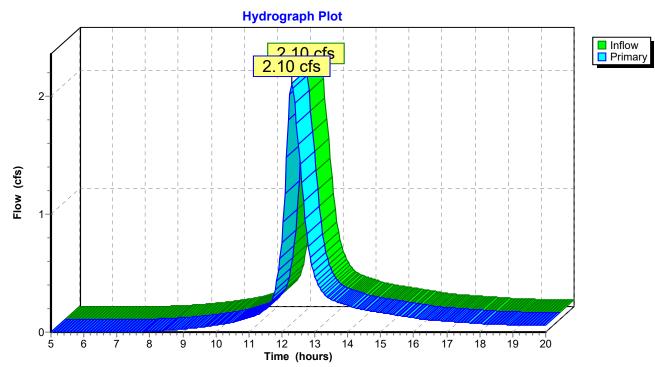
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	2.10 cfs @	12.31 hrs, Volume=	0.216 af
Outflow	=	2.10 cfs @	12.31 hrs, Volume=	0.216 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.10 cfs @	12.31 hrs, Volume=	0.216 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 411.37' Storage= 14 cf

Plug-Flow detention time= 0.2 min calculated for 0.216 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
410.50	16	0	0
412.75	16	36	36

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

410.50' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 410.25' S= 0.0104 '/' n= 0.012 Cc= 0.900

Pond CB-20A: CB-20A

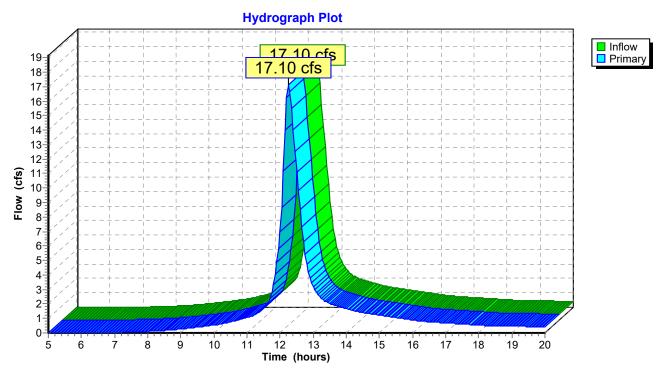
Pond CB-21: CB-21

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-20 Primary device # 1 OUTLET by 1.47' [79] Warning: Submerged Pond CB-21A Primary device # 1 INLET by 0.41

Inflow	=	17.10 cfs @	12.26 hrs, `	Volume=	1.689 af
Outflow	=	17.10 cfs @	12.26 hrs, 1	Volume=	1.689 af, Atten= 0%, Lag= 0.0 min
Primary	=	17.10 cfs @	12.26 hrs, `	Volume=	1.689 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 407.12' Storage= 29 cf


Plug-Flow detention time= 0.1 min calculated for 1.689 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
405.33	16	0	0
409.63	16	69	69

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	405.33'	30.0" x 136.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 403.00' S= 0.0171 '/' n= 0.012 Cc= 0.900

Pond CB-21: CB-21

Pond CB-21A: CB-21A

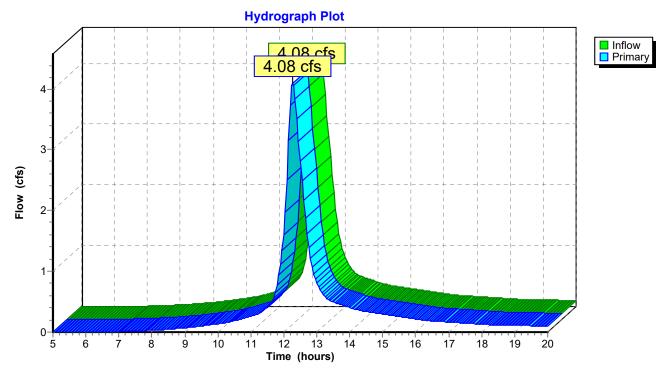
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	4.08 cfs @	12.28 hrs, Volume=	0.411 af
Outflow	=	4.08 cfs @	12.28 hrs, Volume=	0.411 af, Atten= 0%, Lag= 0.1 min
Primary	=	4.08 cfs @	12.28 hrs, Volume=	0.411 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 407.71' Storage= 16 cf

Plug-Flow detention time= 0.2 min calculated for 0.411 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
406.71	16	0	0
409.71	16	48	48

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 406.71' 1 Primary Outlet Invert= 406.33' S= 0.0158 '/' n= 0.012 Cc= 0.900

Pond CB-21A: CB-21A

Pond CB-21C: CB-21C

[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	2.31 cfs @	12.26 hrs, Volume=	0.224 af
Outflow	=	2.31 cfs @	12.26 hrs, Volume=	0.224 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.31 cfs @	12.26 hrs, Volume=	0.224 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 409.26' Storage= 17 cf

Plug-Flow detention time= 0.3 min calculated for 0.223 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
408.22	16	0	0
411.22	16	48	48

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 408.22' 1 Primary Outlet Invert= 408.10' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-21C: CB-21C

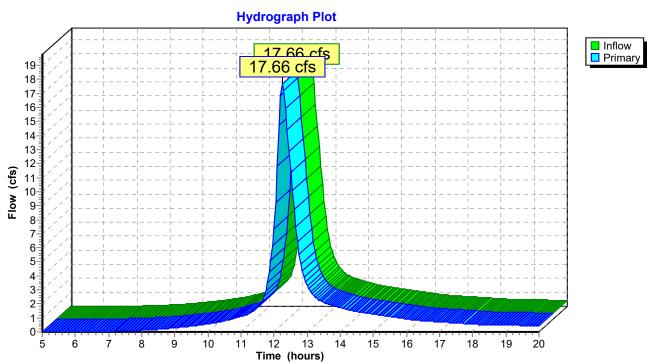
Pond CB-22: CB-22

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-21 Primary device # 1 OUTLET by 1.82' [79] Warning: Submerged Pond CB-22A Primary device # 1 INLET by 0.20'

Inflow	=	17.66 cfs @	12.26 hrs, Volume=	1.752 af
Outflow	=	17.66 cfs @	12.26 hrs, Volume=	1.752 af, Atten= 0%, Lag= 0.0 min
Primary	=	17.66 cfs @	12.26 hrs, Volume=	1.752 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 404.83' Storage= 29 cf


Plug-Flow detention time= 0.1 min calculated for 1.746 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
403.00	16	0	0
407.16	16	67	67

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	403.00'	30.0" x 196.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 396.30' S= 0.0342 '/' n= 0.012 Cc= 0.900

Pond CB-22: CB-22

Pond CB-22A: CB-22A

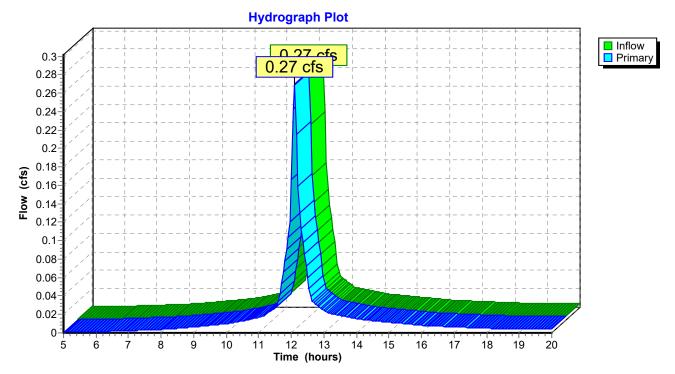
[82] Warning: Early inflow requires earlier time span [88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	0.27 cfs @	12.09 hrs,	Volume=	0.019 af
Outflow	=	0.27 cfs @	12.09 hrs,	Volume=	0.019 af, Atten= 0%, Lag= 0.2 min
Primary	=	0.27 cfs @	12.09 hrs,	Volume=	0.019 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 404.92' Storage= 5 cf Plug-Flow detention time= 1.1 min calculated for 0.019 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
404.62	16	0	0
407.20	16	41	41


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

404.62' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 404.50' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-22A: CB-22A

Pond CB-23: CB-23

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-22 Primary device # 1 OUTLET by 1.93' [79] Warning: Submerged Pond CB-23A Primary device # 1 INLET by 0.30'

Inflow	=	19.02 cfs @	12.25 hrs, Volume	= 1.888 af	
Outflow	=	19.02 cfs @	12.25 hrs, Volume	= 1.888 af, At	tten= 0%, Lag= 0.0 min
Primary	=	19.02 cfs @	12.25 hrs, Volume	= 1.888 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 398.23' Storage= 31 cf

Plug-Flow detention time= 0.1 min calculated for 1.881 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
396.31	16	0	0
400.43	16	66	66

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	396.31'	30.0" x 135.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 383.20' S= 0.0971 '/' n= 0.012 Cc= 0.900

Pond CB-23: CB-23

Pond CB-23A: CB-23A

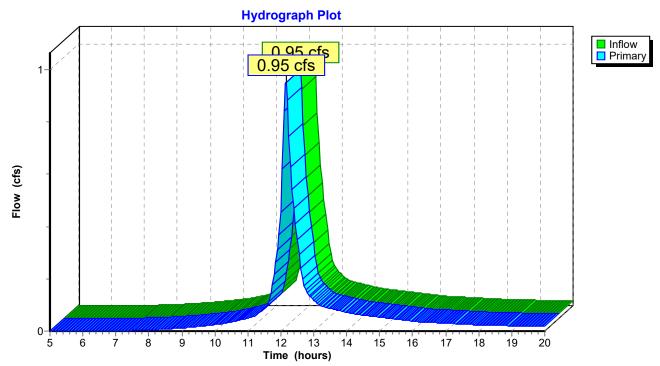
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	0.95 cfs @	12.15 hrs, Volume=	0.075 af
Outflow	=	0.95 cfs @	12.16 hrs, Volume=	0.075 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.95 cfs @	12.16 hrs, Volume=	0.075 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 398.53' Storage= 10 cf

Plug-Flow detention time= 0.5 min calculated for 0.075 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
397.93	16	0	0
400.43	16	40	40

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

397.93' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 397.81' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-23A: CB-23A

Page 136 5/26/2021

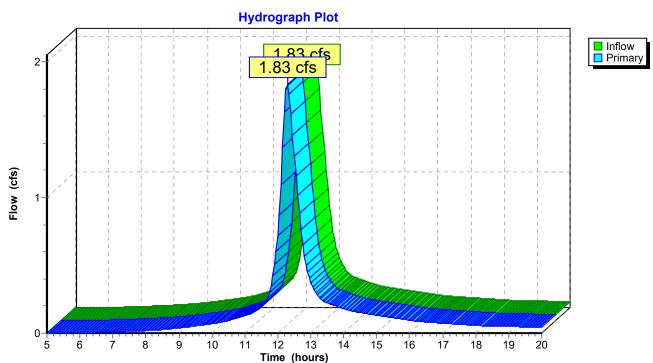
Pond CB-24: CB-24

[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	1.83 cfs @	12.29 hrs, Volume=	0.189 af
Outflow	=	1.83 cfs @	12.29 hrs, Volume=	0.189 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.83 cfs @	12.29 hrs, Volume=	0.189 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 424.95' Storage= 14 cf


Plug-Flow detention time= 0.3 min calculated for 0.188 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
424.09	16	0	0
427.50	16	55	55

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

424.09' 12.0" x 56.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 423.81' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-24: CB-24

Pond CB-25: CB-25

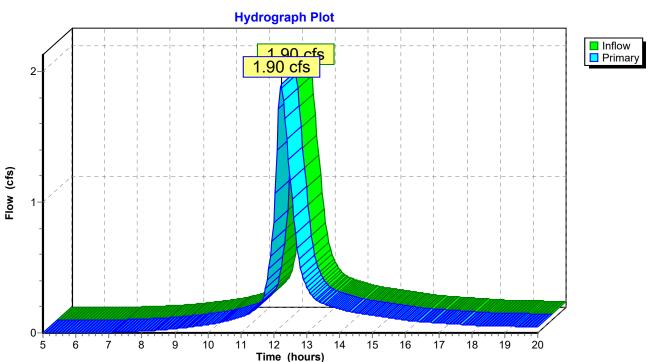
[88] Warning: Qout>Qin may require Finer Routing>1 [80] Warning: Exceeded Pond CB-25A by 0.09' @ 12.35 hrs (0.50 cfs)

Inflow	=	1.90 cfs @	12.22 hrs,	Volume=	0.188 af
Outflow	=	1.90 cfs @	12.22 hrs,	Volume=	0.188 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.90 cfs @	12.22 hrs,	Volume=	0.188 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 428.73' Storage= 12 cf Plug-Flow detention time= 0.3 min calculated for 0.188 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
427.97	16	0	0
430.59	16	42	42

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

427.97' 12.0" x 337.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 424.84' S= 0.0093 '/' n= 0.012 Cc= 0.900

Pond CB-25: CB-25

Pond CB-25A: CB-25A

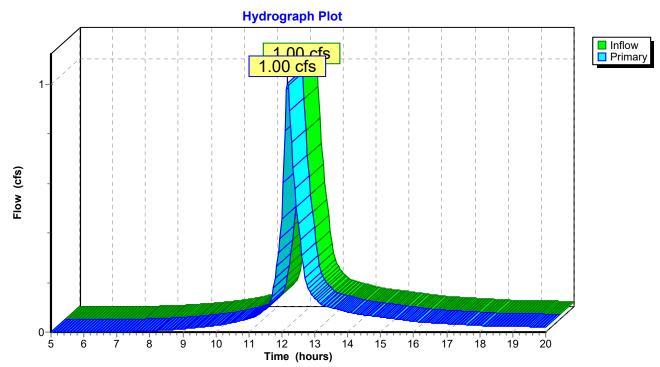
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	1.00 cfs @	12.18 hrs, Volume=	0.085 af
Outflow	=	1.00 cfs @	12.18 hrs, Volume=	0.085 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.00 cfs @	12.18 hrs, Volume=	0.085 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 428.70' Storage= 10 cf

Plug-Flow detention time= 0.4 min calculated for 0.085 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
428.09	16	0	0
430.59	16	40	40

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

428.09' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 427.97' S= 0.0050 '/' n= 0.012 Cc= 0.900

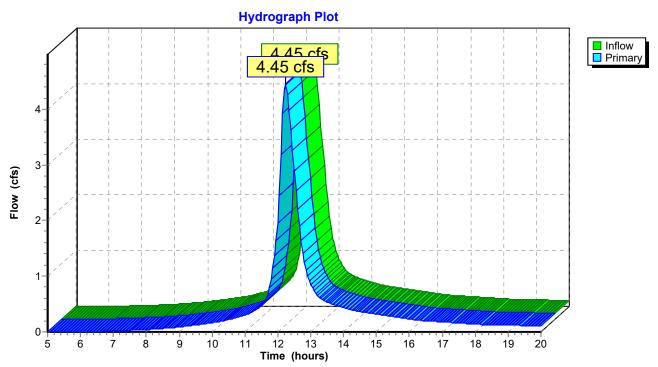
Pond CB-25A: CB-25A

Pond CB-26: CB-26

[88] Warning: Qout>Qin may require Finer Routing>1
[79] Warning: Submerged Pond CB-25 Primary device # 1 OUTLET by 1.11'
[80] Warning: Exceeded Pond CB-26A by 0.11' @ 12.30 hrs (0.64 cfs)

Inflow	=	4.45 cfs @	12.24 hrs, Volume=	= 0.454 af
Outflow	=	4.45 cfs @	12.24 hrs, Volume=	0.454 af, Atten= 0%, Lag= 0.0 min
Primary	=	4.45 cfs @	12.24 hrs, Volume=	0.454 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 425.95' Storage= 18 cf

Plug-Flow detention time= 0.2 min calculated for 0.454 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
424.83	16	0	0
427.83	16	48	48

Primary OutFlow (Free Discharge)

# Routing	Invert	Outlet Devices
1 Primary	424.83'	18.0" x 132.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 424.12' S= 0.0054 '/' n= 0.012 Cc= 0.900

Pond CB-26: CB-26

Pond CB-26A: CB-26A

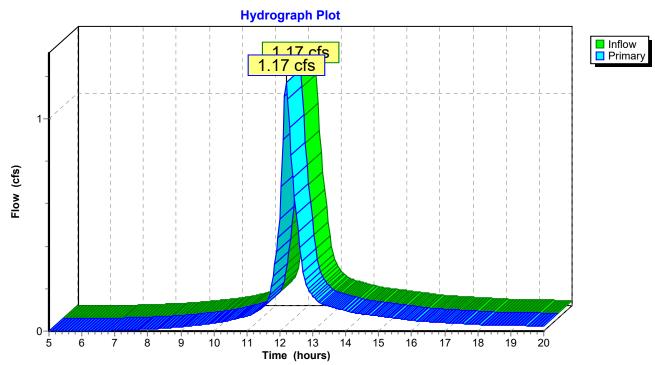
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	1.17 cfs @	12.20 hrs, Volume=	0.103 af
Outflow	=	1.17 cfs @	12.20 hrs, Volume=	0.103 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.17 cfs @	12.20 hrs, Volume=	0.103 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 425.87' Storage= 9 cf

Plug-Flow detention time= 0.3 min calculated for 0.102 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
425.31	16	0	0
427.81	16	40	40

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

425.31' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 424.83' S= 0.0200 '/' n= 0.012 Cc= 0.900

Pond CB-26A: CB-26A

Pond CB-27A: CB-27A

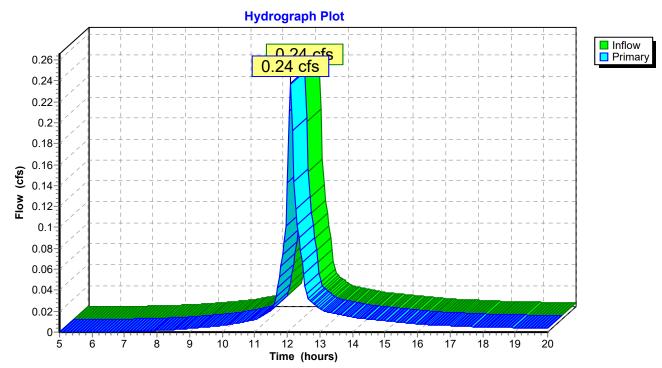
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	0.24 cfs @	12.09 hrs, Volume=	0.016 af
Outflow	=	0.24 cfs @	12.09 hrs, Volume=	0.016 af, Atten= 0%, Lag= 0.2 min
Primary	=	0.24 cfs @	12.09 hrs, Volume=	0.016 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 424.85' Storage= 4 cf

Plug-Flow detention time= 0.8 min calculated for 0.016 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
424.61	16	0	0
427.11	16	40	40

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

1 Primary 424.61' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 423.61' S= 0.0417 '/' n= 0.012 Cc= 0.900

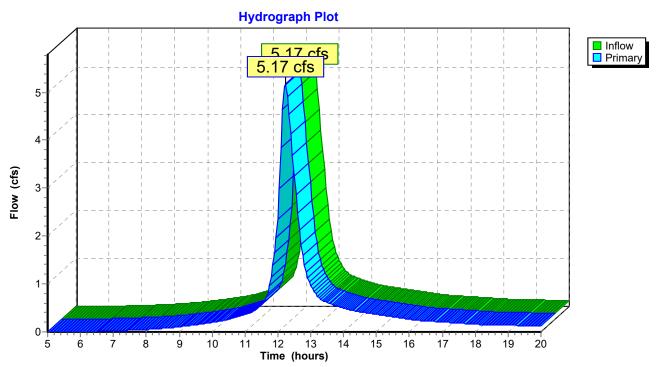
Pond CB-27A: CB-27A

Pond CB-27B: CB-27.B

[88] Warning: Qout>Qin may require Finer Routing>1
[79] Warning: Submerged Pond CB-26 Primary device # 1 OUTLET by 0.62'
[79] Warning: Submerged Pond CB-27A Primary device # 1 INLET by 0.13'

Inflow	=	5.17 cfs @	12.23 hrs, Volume=	0.527 af
Outflow	=	5.17 cfs @	12.23 hrs, Volume=	0.527 af, Atten= 0%, Lag= 0.0 min
Primary	=	5.17 cfs @	12.23 hrs, Volume=	0.527 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 424.74' Storage= 18 cf

Plug-Flow detention time= 0.1 min calculated for 0.527 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
423.61	16	0	0
427.11	16	56	56

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	423.61'	18.0" x 84.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	-		Outlet Invert= 420.95' S= 0.0317 '/' n= 0.012 Cc= 0.900

Pond CB-27B: CB-27.B

Pond CB-28: CB-28

Page 143

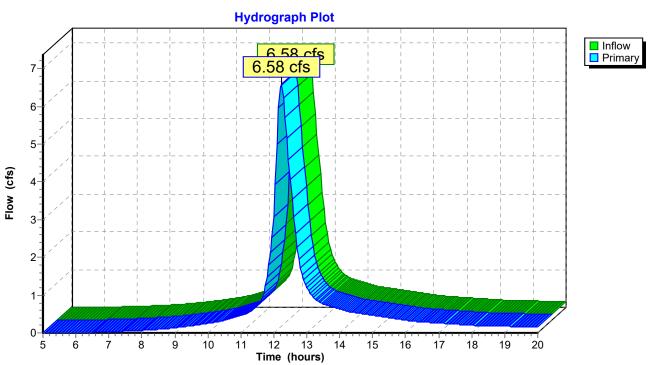
5/26/2021

[88] Warning: Qout>Qin may require Finer Routing>1 [80] Warning: Exceeded Pond CB-28A by 0.11' @ 12.25 hrs (2.85 cfs)

Inflow	=	6.58 cfs @	12.23 hrs, √	/olume=	0.666 af
Outflow	=	6.58 cfs @	12.23 hrs, V	/olume=	0.666 af, Atten= 0%, Lag= 0.1 min
Primary	=	6.58 cfs @	12.23 hrs, ∖	/olume=	0.666 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 422.45' Storage= 26 cf Plug-Flow detention time= 0.2 min calculated for 0.666 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
420.83	16	0	0
424.45	16	58	58

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

420.83' 18.0" x 16.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 420.75' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-28: CB-28

Pond CB-28A: CB-28A

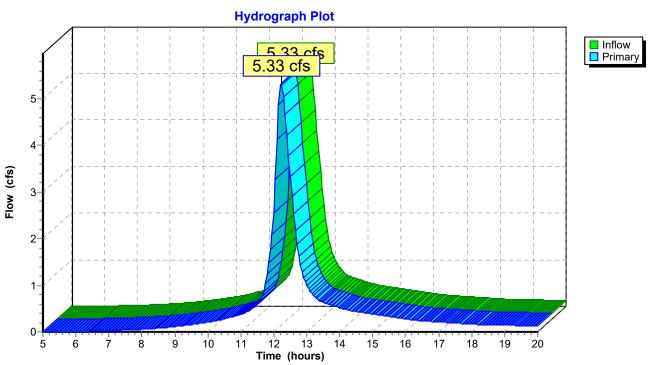
[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-27B Primary device # 1 OUTLET by 1.38'

Inflow	=	5.33 cfs @	12.23 hrs,	Volume=	0.549 af
Outflow	=	5.33 cfs @	12.23 hrs,	Volume=	0.549 af, Atten= 0%, Lag= 0.1 min
Primary	=	5.33 cfs @	12.23 hrs,	Volume=	0.549 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 422.33' Storage= 22 cf Plug-Flow detention time= 0.2 min calculated for 0.549 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
420.95	16	0	0
424.45	16	56	56

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

420.95' 18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 420.83' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-28A: CB-28A

Pond CB-3: CB-3

[82] Warning: Early inflow requires earlier time span

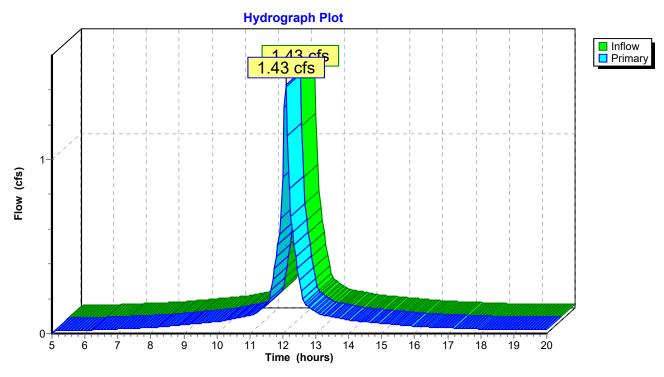
[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

[79] Warning: Submerged Pond CB-2 Primary device # 1 OUTLET by 0.75'

Inflow	=	1.43 cfs @	12.09 hrs, Volume=	0.109 af
Outflow	=	1.43 cfs @	12.09 hrs, Volume=	0.109 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.43 cfs @	12.09 hrs, Volume=	0.109 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 355.26' Storage= 12 cf

Plug-Flow detention time= 0.6 min calculated for 0.109 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
354.50	16	0	0
357.50	16	48	48

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	354.50'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 354.38' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-3: CB-3

Pond CB-4: CB-4

[82] Warning: Early inflow requires earlier time span

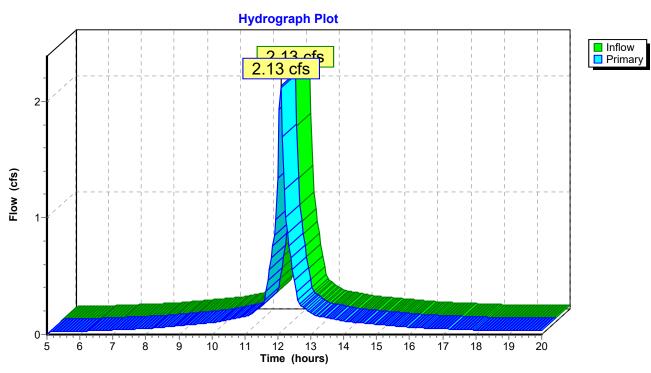
[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

[80] Warning: Exceeded Pond CB-3 by 0.10' @ 12.10 hrs (0.97 cfs)

Inflow	=	2.13 cfs @ 12.0	09 hrs, Volume=	0.163 af	
Outflow	=	2.13 cfs @ 12.0	09 hrs, Volume=	0.163 af, Atte	en= 0%, Lag= 0.1 min
Primary	=	2.13 cfs @ 12.0	09 hrs, Volume=	0.163 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 355.36' Storage= 16 cf

Plug-Flow detention time= 0.4 min calculated for 0.163 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
354.38	16	0	0
357.50	16	50	50

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	354.38'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 354.26' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-4: CB-4

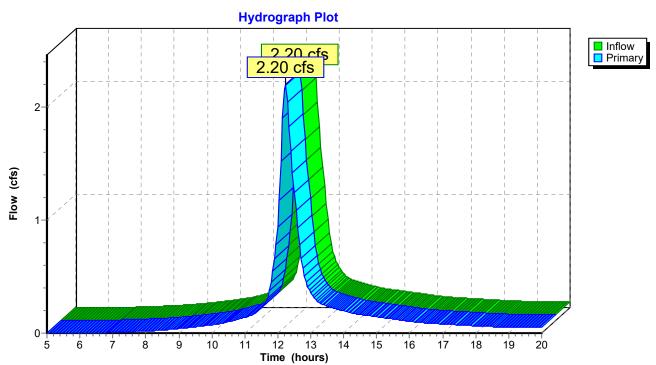
Pond CB-6: CB-6

[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	2.20 cfs @	12.23 hrs, Volume=	0.206 af
Outflow	=	2.20 cfs @	12.23 hrs, Volume=	0.206 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.20 cfs @	12.23 hrs, Volume=	0.206 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 384.01' Storage= 13 cf


Plug-Flow detention time= 0.2 min calculated for 0.205 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
383.17	16	0	0
385.27	16	34	34

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

12.0" x 390.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 383.17' 1 Primary Outlet Invert= 0.00' S= 0.9825 '/' n= 0.017 Cc= 0.900

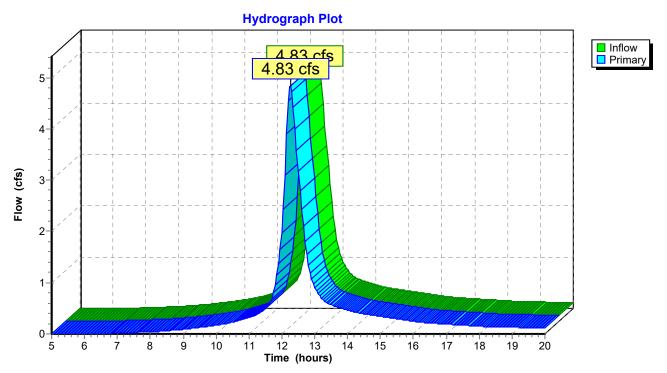
Pond CB-6: CB-6

Pond CB-7: CB-7

[88] Warning: Qout>Qin may require Finer Routing>1
[79] Warning: Submerged Pond CB-6 Primary device # 1 OUTLET by 377.72'
[79] Warning: Submerged Pond CB-7A Primary device # 1 INLET by 0.58'

Inflow	=	4.83 cfs @	12.26 hrs,	Volume=	0.482 af
Outflow	=	4.83 cfs @	12.26 hrs,	Volume=	0.482 af, Atten= 0%, Lag= 0.0 min
Primary	=	4.83 cfs @	12.26 hrs,	Volume=	0.482 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 377.72' Storage= 17 cf

Plug-Flow detention time= 0.1 min calculated for 0.480 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
376.64	16	0	0
379.64	16	48	48

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	376.64'	18.0" x 160.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	-		Outlet Invert= 373.76' S= 0.0180 '/' n= 0.012 Cc= 0.900

Pond CB-7: CB-7

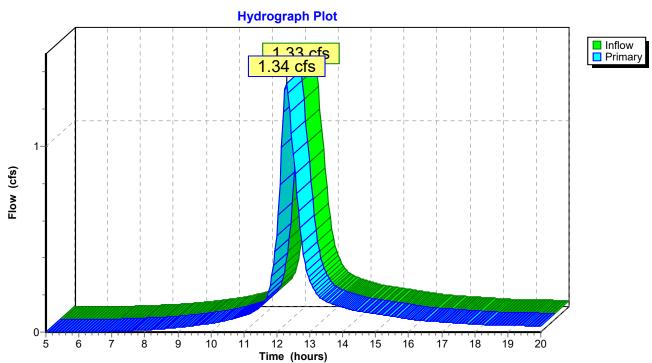
Pond CB-7A: CB-7A

[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	1.33 cfs @	12.29 hrs, Volume=	0.137 af
Outflow	=	1.34 cfs @	12.29 hrs, Volume=	0.137 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.34 cfs @	12.29 hrs, Volume=	0.137 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 377.75' Storage= 10 cf


Plug-Flow detention time= 0.3 min calculated for 0.136 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
377.14	16	0	0
379.64	16	40	40

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

377.14' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 376.64' S= 0.0208 '/' n= 0.012 Cc= 0.900

Pond CB-7A: CB-7A

Pond CB-9: CB-9

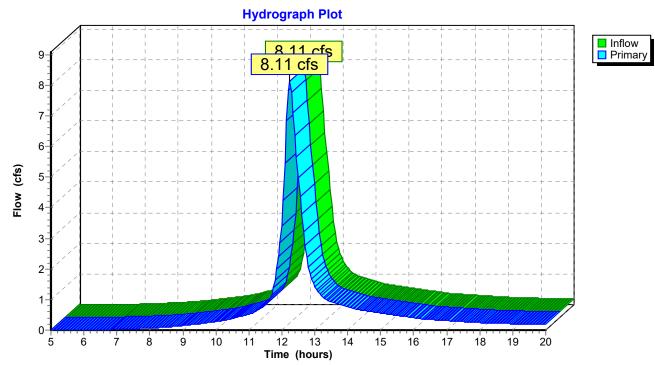
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	8.11 cfs @	12.25 hrs, Volume=	0.789 af
Outflow	=	8.11 cfs @	12.25 hrs, Volume=	0.789 af, Atten= 0%, Lag= 0.0 min
Primary	=	8.11 cfs @	12.25 hrs, Volume=	0.789 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 372.02' Storage= 22 cf

Plug-Flow detention time= 0.1 min calculated for 0.786 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
370.63	16	0	0
375.80	16	83	83

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

Primary 370.63' 24.0" x 190.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Outlet Invert= 369.68' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-9: CB-9

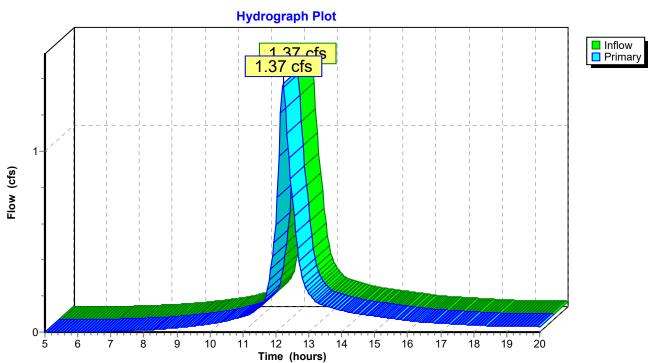
Pond CB-9A: CB-9A

[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	1.37 cfs @	12.22 hrs, Volume=	0.126 af
Outflow	=	1.37 cfs @	12.22 hrs, Volume=	0.126 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.37 cfs @	12.22 hrs, Volume=	0.126 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 373.31' Storage= 10 cf


Plug-Flow detention time= 0.3 min calculated for 0.126 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
372.67	16	0	0
375.67	16	48	48

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

372.67' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 372.37' S= 0.0125 '/' n= 0.012 Cc= 0.900

Pond CB-9A: CB-9A

Pond DMH-1: DMH-1

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-23 Primary device # 1 OUTLET by 2.51'

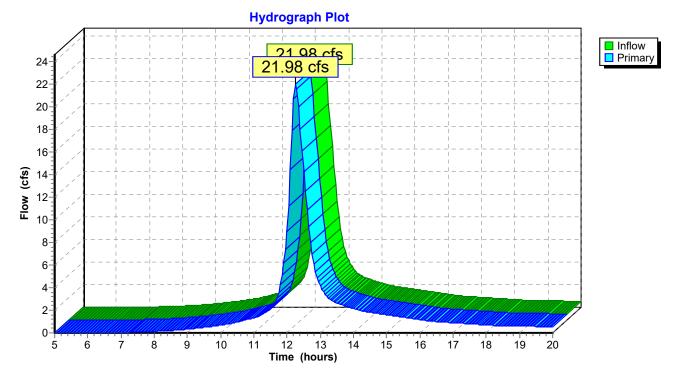
Inflow	=	21.98 cfs @	12.26 hrs, \	Volume=	2.172 af
Outflow	=	21.98 cfs @	12.26 hrs, \	Volume=	2.172 af, Atten= 0%, Lag= 0.0 min
Primary	=	21.98 cfs @	12.26 hrs, `	Volume=	2.172 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 385.72' Storage= 40 cf Plug-Flow detention time= 0.1 min calculated for 2.165 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
383.25	16	0	0
387.25	16	64	64


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

383.25' 30.0" x 65.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 382.93' S= 0.0049 '/' n= 0.012 Cc= 0.900

Pond DMH-1: DMH-1

Pond DMH-2: DMH-2

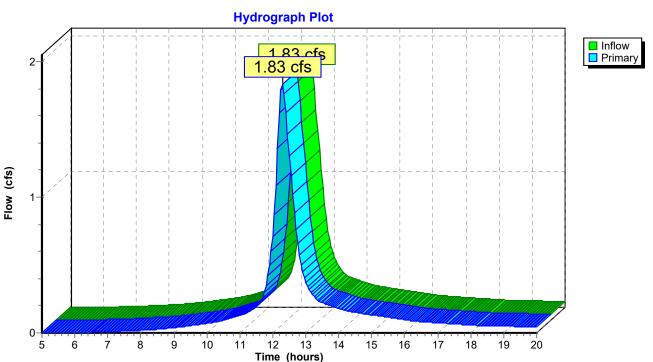
[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-24 Primary device # 1 INLET by 0.46'

Inflow	=	1.83 cfs @	12.29 hrs,	Volume=	0.189 af
Outflow	=	1.83 cfs @	12.29 hrs,	Volume=	0.189 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.83 cfs @	12.29 hrs,	Volume=	0.189 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 424.55' Storage= 12 cf Plug-Flow detention time= 0.3 min calculated for 0.188 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
423.81	16	0	0
428.67	16	78	78

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

423.81' 12.0" x 151.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 421.38' S= 0.0161 '/' n= 0.012 Cc= 0.900

Pond DMH-2: DMH-2

Pond DMH-3: DMH-3

Page 156

5/26/2021

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-28 Primary device # 1 INLET by 1.40'

Inflow	=	6.58 cfs @	12.23 hrs,	Volume=	0.666 af
Outflow	=	6.58 cfs @	12.23 hrs,	Volume=	0.666 af, Atten= 0%, Lag= 0.1 min
Primary	=	6.58 cfs @	12.23 hrs,	Volume=	0.666 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 422.24' Storage= 24 cf

Plug-Flow detention time= 0.1 min calculated for 0.666 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
420.75	16	0	0
425.43	16	75	75


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

420.75' 18.0" x 145.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 420.02' S= 0.0050 '/' n= 0.012 Cc= 0.900

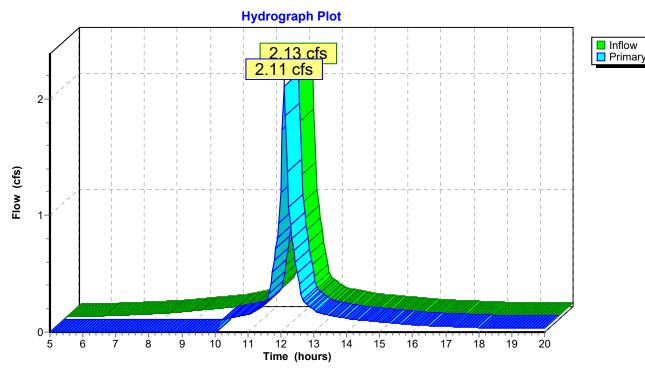
Pond DMH-3: DMH-3

Pond Forbay 1: FORBAY 1

Inflow	=	2.13 cfs @	12.09 hrs, Volume=	0.163 af
Outflow	=	2.11 cfs @	12.10 hrs, Volume=	0.141 af, Atten= 1%, Lag= 0.9 min
Primary	=	2.11 cfs @	12.10 hrs, Volume=	0.141 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 353.30' Storage= 1,087 cf


Plug-Flow detention time= 80.0 min calculated for 0.141 af (87% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sɑ-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
350.00	80	0	0
352.00 354.00	315 750	395	395
354.00	750	1,065	1,460

Primary OutFlow (Free Discharge) —1=Broad-Crested Rectangular Weir

_	#	Routing	Invert	Outlet Devices
	1	Primary	353.00'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
		-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
				Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond Forbay 1: FORBAY 1

Pond PLUNG 2: PLUNGE 2

Inflow	=	3.47 cfs @	12.16 hrs,	Volume=	0.353 af
Outflow	=	3.44 cfs @	12.19 hrs,	Volume=	0.331 af, Atten= 1%, Lag= 1.6 min
Primary	=	3.44 cfs @	12.19 hrs,	Volume=	0.331 af

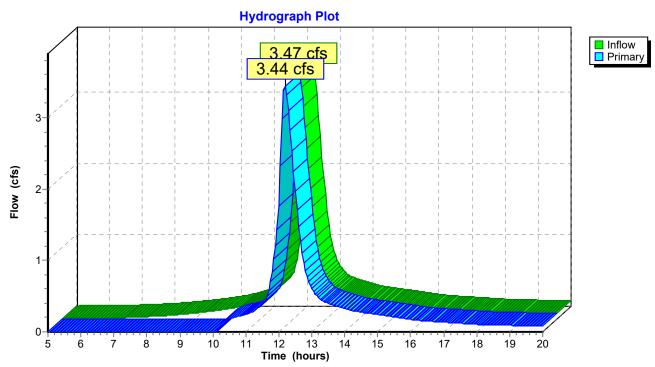
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 366.41' Storage= 1,333 cf

Plug-Flow detention time= 39.8 min calculated for 0.331 af (94% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
363.00	100	0	0
364.00	150	125	125
366.00	622	772	897
367.00	1,500	1,061	1,958

Primary OutFlow (Free Discharge)


1

-1=Broad-Crested Rectangular Weir

Routing Invert **Outlet Devices**

> Primary 366.00' 5.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond PLUNG 2: PLUNGE 2

Pond PLUNGE 1: PLUNGE 1

[91] Warning: Storage range exceeded by 0.28'

Inflow	=	8.47 cfs @	12.24 hrs, V	/olume=	0.846 af
Outflow	=	8.46 cfs @	12.25 hrs, V	/olume=	0.803 af, Atten= 0%, Lag= 0.7 min
Primary	=	8.46 cfs @	12.25 hrs, V	/olume=	0.803 af

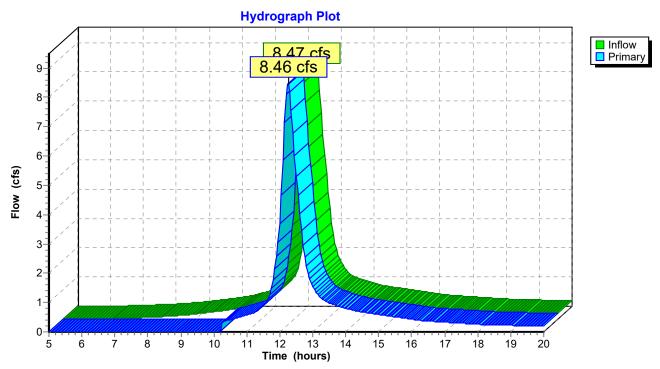
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 362.28' Storage= 2,249 cf

Plug-Flow detention time= 31.9 min calculated for 0.803 af (95% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
358.00	50	0	0
362.00	1,000	2,100	2,100

Primary OutFlow (Free Discharge)


1

-1=Broad-Crested Rectangular Weir

Routing Invert **Outlet Devices**

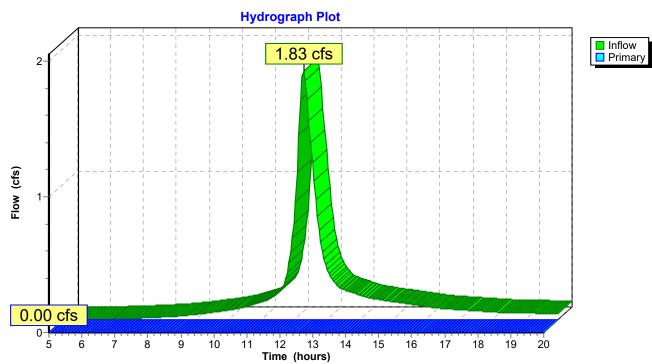
> Primary 361.50' 5.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond PLUNGE 1: PLUNGE 1

Pond PLUNGE 4: PLUNGE 4

[91] Warning: Storage range exceeded by 31.18' [80] Warning: Exceeded Pond DMH-2 by 31.24' @ 19.95 hrs (14.97 cfs)

Inflow	=	1.83 cfs @	12.29 hrs, Volume=	0.189 af
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 455.18' Storage= 8,212 cf Plug-Flow detention time= (not calculated) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sɑ-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
420.00	40	0	0
422.00	125	165	165
424.00	360	485	650

Primary OutFlow (Free Discharge) —1=Broad-Crested Rectangular Weir

 #	Routing	Invert	Outlet Devices
1	Primary	424.00'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

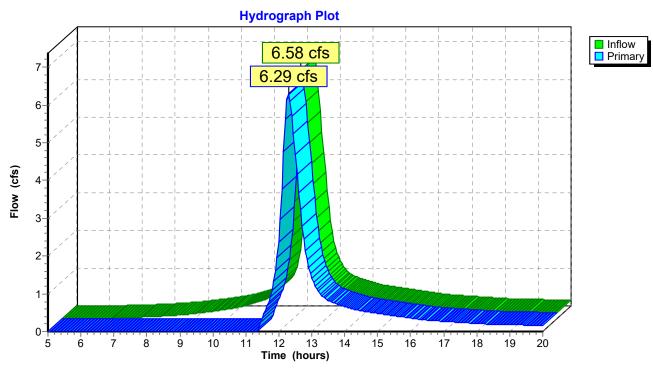
Pond PLUNGE 4: PLUNGE 4

Pond PLUNGE 5: PLUNGE 5

[91] Warning: Storage range exceeded by 0.12'

Inflow	=	6.58 cfs @	12.23 hrs, Volume=	0.666 af
Outflow	=	6.29 cfs @	12.30 hrs, Volume=	0.592 af, Atten= 4%, Lag= 3.9 min
Primary	=	6.29 cfs @	12.30 hrs, Volume=	0.592 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 418.12' Storage= 4,939 cf

Plug-Flow detention time= 61.5 min calculated for 0.590 af (88% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
414.00	125	0	0
416.00	700	825	825
417.00	900	800	1,625
418.00	5,000	2,950	4,575

Primary OutFlow (Free Discharge) —1=Broad-Crested Rectangular Weir

 #	Routing	Invert	Outlet Devices
1	Primary	417.50'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond PLUNGE 5: PLUNGE 5

Carver Court Prepared by {enter your company name <u>HydroCAD® 6.00 s/n 000694 © 1986-2001 A</u>				
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, TYPEII~2 Rainfall=6.60" Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method				
Subcatchment D1: D-1	Tc=6.0 min CN=98 Area=4,262 sf Runoff= 0.62 cfs 0.048 af			
Subcatchment D-10: D-10	Tc=6.0 min CN=98 Area=3,302 sf Runoff= 0.48 cfs 0.037 af			
Subcatchment D-11: D-11	Tc=6.0 min CN=98 Area=3,099 sf Runoff= 0.45 cfs 0.035 af			
Subcatchment D-11A: D-11A	Tc=6.0 min CN=98 Area=2,486 sf Runoff= 0.36 cfs 0.028 af			
Subcatchment D-12: D-12	Tc=16.6 min CN=87 Area=18,053 sf Runoff= 1.74 cfs 0.166 af			
Subcatchment D-12A: D-12A	Tc=11.9 min CN=87 Area=17,038 sf Runoff= 1.85 cfs 0.157 af			
Subcatchment D-13: D-13	Tc=6.0 min CN=94 Area=8,280 sf Runoff= 1.17 cfs 0.088 af			
Subcatchment D-13A: D-13A	Tc=6.0 min CN=98 Area=2,837 sf Runoff= 0.41 cfs 0.032 af			
Subcatchment D-14: D-14	Tc=20.7 min CN=87 Area=21,592 sf Runoff= 1.91 cfs 0.198 af			
Subcatchment D-14A: D-14A	Tc=6.0 min CN=98 Area=5,177 sf Runoff= 0.75 cfs 0.058 af			
Subcatchment D-15: D-15	Tc=6.0 min CN=98 Area=2,000 sf Runoff= 0.29 cfs 0.022 af			

Subcatchment D-15A: D-15A

Subcatchment D-16: D-16

Subcatchment D-16A: D-16A

Subcatchment D-17: D-17

Tc=6.0 min CN=98 Area=3,577 sf Runoff= 0.52 cfs 0.040 af

Tc=12.1 min CN=91 Area=7,050 sf Runoff= 0.81 cfs 0.071 af

Tc=6.0 min CN=98 Area=2,580 sf Runoff= 0.37 cfs 0.029 af

Tc=9.8 min CN=92 Area=8,484 sf Runoff= 1.05 cfs 0.087 af

Carver Court Prepared by {enter your company name HydroCAD® 6.00 s/n 000694 © 1986-2001 Ap	
119010CAD® 0.00 3/11 000034 @ 1980-2001 Ap	
Subcatchment D-17A: D-17A	Tc=12.4 min CN=88 Area=22,859 sf Runoff= 2.49 cfs 0.215 af
Subcatchment D-18: D-18	Tc=15.4 min CN=86 Area=9,762 sf Runoff= 0.95 cfs 0.088 af
Subcatchment D-18B: D-18	Tc=20.3 min CN=87 Area=86,619 sf Runoff= 7.72 cfs 0.795 af
Subcatchment D-19: D-19	Tc=17.2 min CN=88 Area=27,495 sf Runoff= 2.65 cfs 0.258 af
Subcatchment D-19A: D-19A	Tc=17.3 min CN=85 Area=85,319 sf Runoff= 7.80 cfs 0.748 af
Subcatchment D-2: D-2	Tc=6.0 min CN=98 Area=4,523 sf Runoff= 0.66 cfs 0.051 af
Subcatchment D-20: D-20	Tc=13.4 min CN=91 Area=17,867 sf Runoff= 1.97 cfs 0.179 af
Subcatchment D-21: D-21	Tc=17.1 min CN=87 Area=13,201 sf Runoff= 1.26 cfs 0.121 af
Subcatchment D-21A: D-21A	Tc=22.0 min CN=89 Area=38,849 sf Runoff= 3.46 cfs 0.372 af
Subcatchment D-21C: D-21C	Tc=19.1 min CN=86 Area=1.196 ac Runoff= 4.68 cfs 0.467 af
Subcatchment D-22: D-22	Tc=12.3 min CN=87 Area=9,713 sf Runoff= 1.05 cfs 0.089 af
Subcatchment D-22A: D-22A	Tc=6.0 min CN=93 Area=3,475 sf Runoff= 0.49 cfs 0.036 af
Subcatchment D-23: D-23	Tc=13.1 min CN=89 Area=12,626 sf Runoff= 1.36 cfs 0.121 af
Subcatchment D-23A: D-23A	Tc=11.0 min CN=86 Area=0.401 ac Runoff= 1.92 cfs 0.157 af
Subcatchment D-24: D-24	Tc=21.4 min CN=89 Area=39,239 sf Runoff= 3.53 cfs 0.376 af
Subcatchment D-25: D-25	Tc=21.7 min CN=88 Area=22,353 sf Runoff= 1.97 cfs 0.210 af

Carver Court Prepared by {enter your company name	
HydroCAD® 6.00 s/n 000694 © 1986-2001 Ap	oplied Microcomputer Systems 5/26/2021
Subcatchment D-25A: D-25A	Tc=13.0 min CN=86 Area=19,613 sf Runoff= 2.03 cfs 0.176 af
Subcatchment D-26: D-26	Tc=23.0 min CN=90 Area=32,858 sf Runoff= 2.91 cfs 0.322 af
Subcatchment D-26A: D-26A	Tc=14.3 min CN=88 Area=22,077 sf Runoff= 2.29 cfs 0.207 af
Subcatchment D-27: D-27	Tc=16.3 min CN=91 Area=10,860 sf Runoff= 1.12 cfs 0.109 af
Subcatchment D-27A: D-27A	Tc=6.0 min CN=88 Area=3,503 sf Runoff= 0.46 cfs 0.033 af
Subcatchment D-28: D-28	Tc=17.1 min CN=88 Area=25,225 sf Runoff= 2.44 cfs 0.237 af
Subcatchment D-28A: D-28A	Tc=6.0 min CN=93 Area=4,067 sf Runoff= 0.57 cfs 0.042 af
Subcatchment D-2OA: D-20A	Tc=22.3 min CN=85 Area=52,267 sf Runoff= 4.32 cfs 0.457 af
Subcatchment D-3: D-3	Tc=6.0 min CN=98 Area=8,167 sf Runoff= 1.18 cfs 0.092 af
Subcatchment D-4: D-4	Tc=6.0 min CN=98 Area=8,318 sf Runoff= 1.21 cfs 0.093 af
Subcatchment D-6: D-6	Tc=17.1 min CN=88 Area=44,426 sf Runoff= 4.30 cfs 0.417 af
Subcatchment D-7: D-7	Tc=21.4 min CN=88 Area=29,922 sf Runoff= 2.65 cfs 0.281 af
Subcatchment D-7A: D-7A	Tc=21.4 min CN=88 Area=29,500 sf Runoff= 2.61 cfs 0.277 af
Subcatchment D-9: D-9	Tc=16.4 min CN=88 Area=39,040 sf Runoff= 3.85 cfs 0.367 af
Subcatchment D-9A: CB-9A	Tc=16.4 min CN=88 Area=27,189 sf Runoff= 2.68 cfs 0.255 af
Subcatchment D-DMH-1: D-DMH-1	Tc=6.0 min CN=85 Area=69,237 sf Runoff= 8.66 cfs 0.609 af

Carver Court Prepared by {enter your company nar HydroCAD® 6.00 s/n 000694 © 1986-2001	
Subcatchment EX-1: EX-1	Tc=30.6 min CN=79 Area=16.430 ac Runoff= 45.38 cfs 5.377 af
Subcatchment EX-2: EX-2	Tc=41.6 min CN=79 Area=25.510 ac Runoff= 60.70 cfs 8.319 af
Subcatchment EX-3: EX-3	Tc=47.7 min CN=79 Area=35.510 ac Runoff= 78.65 cfs 11.557 af
Subcatchment EX-4: EX-4	Tc=27.4 min CN=79 Area=11.470 ac Runoff= 33.25 cfs 3.758 af
Subcatchment OPEN 1: OIPEN 1	Tc=42.8 min CN=79 Area=426,190 sf Runoff= 22.96 cfs 3.189 af
Subcatchment OPEN 2: OPEN 2	Tc=13.4 min CN=79 Area=168,705 sf Runoff= 14.94 cfs 1.275 af
Subcatchment OPEN 3: OPEN 3	Tc=50.3 min CN=79 Area=319,952 sf Runoff= 15.81 cfs 2.388 af
Subcatchment OPEN 4: OPEN 4	Tc=29.2 min CN=80 Area=632,860 sf Runoff= 41.89 cfs 4.883 af
Subcatchment OPEN 5: OPEN 5	Tc=29.8 min CN=79 Area=326,510 sf Runoff= 20.95 cfs 2.454 af
Subcatchment OPEN 6: OPEN 6	Tc=35.7 min CN=79 Area=224,401 sf Runoff= 13.23 cfs 1.683 af
Subcatchment OPEN 7: OPEN 7	Tc=36.5 min CN=79 Area=457,482 sf Runoff= 26.66 cfs 3.431 af
Subcatchment POND 1: POND 1	Tc=6.0 min CN=80 Area=17,554 sf Runoff= 1.99 cfs 0.136 af
Subcatchment POND 2: POND 2	Tc=6.0 min CN=80 Area=49,954 sf Runoff= 5.65 cfs 0.388 af
Subcatchment POND 3: POND 3	Tc=6.0 min CN=80 Area=42,753 sf Runoff= 4.84 cfs 0.332 af
Subcatchment POND 5: POND 5	Tc=6.0 min CN=80 Area=50,948 sf Runoff= 5.76 cfs 0.396 af
Subcatchment POND 6: POND 6	Tc=15.4 min CN=80 Area=140,626 sf Runoff= 12.16 cfs 1.090 af

Carver Court	TYPEII~2 Rainfall=6.60" 100 Year Storm
Prepared by {enter your company name here}	Page 5
HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomp	puter Systems 5/26/2021
Reach CULVERT 1: CULVERT 1	Inflow= 22.96 cfs 3.189 af
Length= 42.0' Max Vel= 9.0 fps	Capacity= 108.99 cfs Outflow= 22.95 cfs 3.189 af
Reach CULVERT 2: CULVERT 2	Inflow= 72.95 cfs 9.703 af
Length= 46.0' Max Vel= 12.1 fps	Capacity= 108.99 cfs Outflow= 72.93 cfs 9.703 af
Reach CULVERT 3: CULVERT 3	Inflow= 15.81 cfs 2.388 af
Length= 42.0' Max Vel= 8.1 fps	Capacity= 108.99 cfs Outflow= 15.80 cfs 2.388 af
Reach DMH-5 TO OUTLET: DMH-5 TO OUTLET	Inflow= 17.33 cfs 4.793 af
Length= 193.0' Max Vel= 6.3 fps	Capacity= 17.28 cfs Outflow= 17.33 cfs 4.789 af
Reach DRY SWALE 1: DRY SWALE 1	Inflow= 3.65 cfs 0.262 af
Length= 125.0' Max Vel= 1.3 fp	os Capacity= 59.21 cfs Outflow= 3.43 cfs 0.262 af
Reach DRY SWALE 2: DRY SWALE 2	Inflow= 6.69 cfs 0.676 af
Length= 140.0' Max Vel= 1.6 fp	os Capacity= 58.97 cfs Outflow= 6.62 cfs 0.675 af
Reach DRY SWALE 3: DRY SWALE 3	Inflow= 5.28 cfs 0.463 af
Length= 220.0' Max Vel= 1.4 fp	os Capacity= 58.97 cfs Outflow= 5.10 cfs 0.462 af
Reach DRY SWALE 4: (new node)	Inflow= 0.00 cfs 0.000 af
Length= 140.0' Max Vel= 0.0 fp	os Capacity= 58.97 cfs Outflow= 0.00 cfs 0.000 af
Reach EX ANALYSIS A: EX ANALYSIS A	Inflow= 105.04 cfs 13.677 af
Length= 10.0' Max Vel= 9.9 fps	Capacity= 71.84 cfs Outflow= 105.03 cfs 13.677 af
Reach EX-ANALYSIS B: EX ANALYSIS B	Inflow= 78.65 cfs 11.557 af
Length= 10.0' Max Vel= 9.2 fps	Capacity= 71.84 cfs Outflow= 78.65 cfs 11.557 af
Reach EX-ANALYSIS C: EX-ANALYSIS C	Inflow= 33.25 cfs 3.758 af
Length= 10.0' Max Vel= 7.2 fps	Capacity= 71.84 cfs Outflow= 33.25 cfs 3.758 af
Reach EX-WETLAND CHANNEL: EX WETLAND CHANN Length= 1,200.0' Max Vel= 7.3 fps	NEL 1 TO 2 Inflow= 45.38 cfs 5.377 af Capacity= 66.95 cfs Outflow= 44.98 cfs 5.358 af
Reach OCS-3 TO DMH-5: OCS3 TO DMH5	Inflow= 21.66 cfs 4.799 af
Length= 274.0' Max Vel= 6.3 fps	Capacity= 17.33 cfs Outflow= 17.33 cfs 4.793 af
Reach OCS-4 TO OUTLET: OCS-4 TO OUTLET	Inflow= 17.93 cfs 2.260 af
Length= 62.0' Max Vel= 13.3 fps	Capacity= 44.02 cfs Outflow= 17.91 cfs 2.260 af
Reach P-ANALYISIS C: P-ANALYSIS C	Inflow= 25.83 cfs 3.535 af
Length= 10.0' Max Vel= 6.6 fps	Capacity= 71.84 cfs Outflow= 25.83 cfs 3.535 af
Reach P-ANALYSIS A: P-ANALYSIS A	Inflow= 104.76 cfs 14.348 af
Length= 10.0' Max Vel= 9.9 fps	Capacity= 71.84 cfs Outflow= 104.77 cfs 14.348 af

Carver Court Prepared by {enter your company name here}	TYPEII~2 Rainfall=6.60" 100 Year Storm Page 6
HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Mid	
Reach P-ANALYSIS B: P-ANALYSIS B Length= 10.0' Max Vel=	Inflow= 67.95 cfs 12.169 af 8.8 fps Capacity= 71.84 cfs Outflow= 67.94 cfs 12.169 af
Reach P-WETLAND CHANNEL: p WETLAND CH Length= 900.0' Max Vel=	ANNEL 1 TO 2 Inflow= 41.89 cfs 4.883 af 7.7 fps Capacity= 74.86 cfs Outflow= 41.60 cfs 4.871 af
Reach POND 1 OUTLET: POND 1 OUTLET Length= 112.0' Max V	Inflow= 1.29 cfs 0.385 af el= 3.4 fps Capacity= 2.73 cfs Outflow= 1.29 cfs 0.385 af
Reach POND 2 OUTLET: POND 2 OUTLET Length= 100.0' Max Vel=	Inflow= 19.29 cfs 2.578 af = 6.3 fps Capacity= 17.33 cfs Outflow= 17.35 cfs 2.577 af
Reach POND 3 OUTLET: POND 3 OUTLET Length= 165.0' Max V	Inflow= 1.52 cfs 0.761 af el= 3.6 fps Capacity= 2.74 cfs Outflow= 1.52 cfs 0.760 af
Reach SWALE: SWALE Length= 1,050.0' Max V	Inflow= 8.66 cfs 0.609 af el= 2.6 fps Capacity= 6.90 cfs Outflow= 6.93 cfs 0.603 af
Reach SWALE FROM CULVERT 3 TO 2: SWALE Length= 800.0' Max Vel=	FROM CULVERT 3 TO 2 Inflow= 15.80 cfs 2.388 af 4.4 fps Capacity= 32.86 cfs Outflow= 15.73 cfs 2.379 af
Pond ATTENUATION 1: ATTENUATION POND 1	Peak Storage= 77,216 cf Inflow= 47.80 cfs 4.887 af Primary= 21.66 cfs 4.799 af Outflow= 21.66 cfs 4.799 af
Pond ATTENUATION BASIN 1: ATTENUATION E	3ASIN 1 Peak Storage= 6,619 cf Inflow= 5.11 cfs 0.398 af Primary= 1.29 cfs 0.385 af Outflow= 1.29 cfs 0.385 af
Pond ATTENUATION BASIN 2: ATTENUATION E	BASINP2 eak Storage= 22,082 cf Inflow= 20.41 cfs 2.627 af Primary= 19.29 cfs 2.578 af Outflow= 19.29 cfs 2.578 af
Pond ATTENUATION BASIN 6: ATTENUATION E	BASINR eak Storage= 23,126 cf Inflow= 22.16 cfs 2.290 af Primary= 17.93 cfs 2.260 af Outflow= 17.93 cfs 2.260 af
Pond ATTENUATION POND 3: ATTENUATION P	OND 3 Peak Storage= 15,425 cf Inflow= 8.31 cfs 0.794 af Primary= 1.52 cfs 0.761 af Outflow= 1.52 cfs 0.761 af
Pond BIO BASIN 2: BIO BASIN 2	Peak Storage= 5,463 cf Inflow= 12.23 cfs 1.258 af Primary= 11.71 cfs 1.200 af Outflow= 11.71 cfs 1.200 af
Pond BIORETENTION 1: BIORETENTION BASIN	1 Peak Storage= 15,739 cf Inflow= 16.48 cfs 1.652 af Primary= 12.74 cfs 1.564 af Outflow= 12.74 cfs 1.564 af
Pond CB-1: CB-1	Peak Storage= 7 cf Inflow= 0.62 cfs 0.048 af Primary= 0.62 cfs 0.048 af Outflow= 0.62 cfs 0.048 af
Pond CB-10: CB-10	Peak Storage= 34 cf Inflow= 16.10 cfs 1.633 af Primary= 16.11 cfs 1.633 af Outflow= 16.11 cfs 1.633 af

Carver Court

TYPEII~2 Rainfall=6.60" 100 Year Storm Page 7

5/26/2021

Prepared by {enter your company name here}	
HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Systems	

	0,20,2021
Pond CB-11: CB-11	Peak Storage= 37 cf Inflow= 16.32 cfs 1.667 af
	Primary= 16.32 cfs 1.667 af Outflow= 16.32 cfs 1.667 af
	Deals Otomore - 27 of Juffews 10 50 of 1 005 of
Pond CB-11A: CB-11A	Peak Storage= 37 cf Inflow= 16.50 cfs 1.695 af
	Primary= 16.50 cfs 1.695 af Outflow= 16.50 cfs 1.695 af
Pond CB-12: CB-12	Peak Storage= 22 cf Inflow= 3.50 cfs 0.322 af
	Primary= 3.51 cfs 0.322 af Outflow= 3.51 cfs 0.322 af
Pond CB-12A: CB-12A	Peak Storage= 14 cf Inflow= 1.85 cfs 0.157 af
	Primary= 1.85 cfs 0.157 af Outflow= 1.85 cfs 0.157 af
Pond CB-13: CB-13	Peak Storage= 33 cf Inflow= 4.63 cfs 0.442 af
	Primary= 4.62 cfs 0.442 af Outflow= 4.62 cfs 0.442 af
Pond CB-13A: CB-13A	Peak Storage= 5 cf Inflow= 0.41 cfs 0.032 af
	Primary= 0.41 cfs 0.032 af Outflow= 0.41 cfs 0.032 af
Pond CB-14: CB-14	Peak Storage= 25 cf Inflow= 6.22 cfs 0.640 af
	Primary= 6.22 cfs 0.640 af Outflow= 6.22 cfs 0.640 af
Pond CB-14A: CB-14A	Peak Storage= 26 cf Inflow= 6.72 cfs 0.698 af
	Primary= 6.72 cfs 0.698 af Outflow= 6.72 cfs 0.698 af
	······································
Pond CB-15: CB-15	Peak Storage= 8 cf Inflow= 1.03 cfs 0.093 af
	Primary= 1.03 cfs 0.093 af Outflow= 1.03 cfs 0.093 af
Pond CB-15A: CB-15A	Peak Storage= 8 cf Inflow= 0.81 cfs 0.071 af
	Primary= 0.81 cfs 0.071 af Outflow= 0.81 cfs 0.071 af
Pond CB-16: CB-16	Peak Storage= 14 cf Inflow= 2.40 cfs 0.209 af
Folia CB-10. CB-10	Primary= 2.40 cfs 0.209 af Outflow= 2.40 cfs 0.209 af
	Filinaly - 2.40 CIS 0.209 al Outlow - 2.40 CIS 0.209 al
Dond CR 464, CR 464	Dook Storago- 0 of Inflow- 1 05 of 0.097 of
Pond CB-16A: CB-16A	Peak Storage= 9 cf Inflow= 1.05 cfs 0.087 af Primary= 1.05 cfs 0.087 af Outflow= 1.05 cfs 0.087 af
Pond CB-17: CB-17	Peak Storage= 20 cf Inflow= 2.89 cfs 0.249 af
	Primary= 2.89 cfs 0.249 af Outflow= 2.89 cfs 0.249 af
Pond CB-17A: CB-17A	Peak Storage= 53 cf Inflow= 5.27 cfs 0.463 af
	Primary= 5.28 cfs 0.463 af Outflow= 5.28 cfs 0.463 af
Pond CB-18: CB-18	Peak Storage= 28 cf Inflow= 8.61 cfs 0.882 af
	Primary= 8.61 cfs 0.882 af Outflow= 8.61 cfs 0.882 af
Pond CB-18A: CB-18A AND B	Peak Storage= 29 cf Inflow= 7.72 cfs 0.795 af
	Primary= 7.72 cfs 0.794 af Outflow= 7.72 cfs 0.794 af

Carver Court

Prepared by {enter your company name here} HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Systems Page 8 <u>5/26/2021</u>

Pond CB-19: CB-19	Peak Storage= 41 cf Inflow= 19.00 cfs 1.888 af Primary= 19.00 cfs 1.888 af Outflow= 19.00 cfs 1.888 af
Pond CB-19A: CB-19A	Peak Storage= 25 cf Inflow= 7.80 cfs 0.748 af Primary= 7.81 cfs 0.748 af Outflow= 7.81 cfs 0.748 af
Pond CB-2: CB-2	Peak Storage= 10 cf Inflow= 1.28 cfs 0.099 af Primary= 1.28 cfs 0.099 af Outflow= 1.28 cfs 0.099 af
Pond CB-20: CB-20	Peak Storage= 59 cf Inflow= 24.93 cfs 2.524 af Primary= 24.94 cfs 2.524 af Outflow= 24.94 cfs 2.524 af
Pond CB-20A: CB-20A	Peak Storage= 29 cf Inflow= 4.32 cfs 0.457 af Primary= 4.32 cfs 0.457 af Outflow= 4.32 cfs 0.457 af
Pond CB-21: CB-21	Peak Storage= 54 cf Inflow= 34.25 cfs 3.484 af Primary= 34.25 cfs 3.484 af Outflow= 34.25 cfs 3.484 af
Pond CB-21A: CB-21A	Peak Storage= 27 cf Inflow= 8.11 cfs 0.839 af Primary= 8.11 cfs 0.839 af Outflow= 8.11 cfs 0.839 af
Pond CB-21C: CB-21C	Peak Storage= 33 cf Inflow= 4.68 cfs 0.467 af Primary= 4.69 cfs 0.467 af Outflow= 4.69 cfs 0.467 af
Pond CB-22: CB-22	Peak Storage= 56 cf Inflow= 35.34 cfs 3.610 af Primary= 35.33 cfs 3.609 af Outflow= 35.33 cfs 3.609 af
Pond CB-22A: CB-22A	Peak Storage= 7 cf Inflow= 0.49 cfs 0.036 af Primary= 0.49 cfs 0.036 af Outflow= 0.49 cfs 0.036 af
Pond CB-22A: CB-22A Pond CB-23: CB-23	
	Primary= 0.49 cfs 0.036 af Outflow= 0.49 cfs 0.036 af Peak Storage= 61 cf Inflow= 38.01 cfs 3.888 af
Pond CB-23: CB-23	Primary= 0.49 cfs 0.036 af Outflow= 0.49 cfs 0.036 af Peak Storage= 61 cf Inflow= 38.01 cfs 3.888 af Primary= 38.02 cfs 3.887 af Outflow= 38.02 cfs 3.887 af Peak Storage= 15 cf Inflow= 1.92 cfs 0.157 af
Pond CB-23: CB-23 Pond CB-23A: CB-23A	Primary= 0.49 cfs 0.036 af Outflow= 0.49 cfs 0.036 af Peak Storage= 61 cf Inflow= 38.01 cfs 3.888 af Primary= 38.02 cfs 3.887 af Outflow= 38.02 cfs 3.887 af Peak Storage= 15 cf Inflow= 1.92 cfs 0.157 af Primary= 1.92 cfs 0.157 af Outflow= 1.92 cfs 0.157 af Peak Storage= 26 cf Inflow= 3.53 cfs 0.376 af
Pond CB-23: CB-23 Pond CB-23A: CB-23A Pond CB-24: CB-24	Primary= 0.49 cfs 0.036 af Outflow= 0.49 cfs 0.036 af Peak Storage= 61 cf Inflow= 38.01 cfs 3.888 af Primary= 38.02 cfs 3.887 af Outflow= 38.02 cfs 3.887 af Peak Storage= 15 cf Inflow= 1.92 cfs 0.157 af Primary= 1.92 cfs 0.157 af Outflow= 1.92 cfs 0.157 af Peak Storage= 26 cf Inflow= 3.53 cfs 0.376 af Primary= 3.52 cfs 0.376 af Outflow= 3.52 cfs 0.376 af Peak Storage= 26 cf Inflow= 3.79 cfs 0.386 af

Carver Court

Prepared by {enter your company name here}	
HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Microcomputer Syst	tem

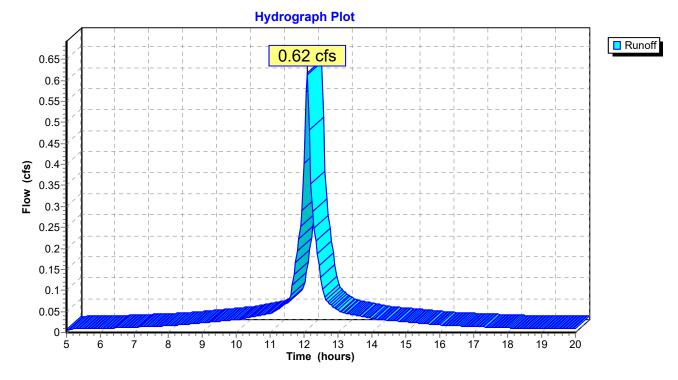
ns 5/26/2021

Pond CB-26A: CB-26A	Peak Storage= 14 cf Inflow= 2.29 cfs 0.207 af Primary= 2.29 cfs 0.207 af Outflow= 2.29 cfs 0.207 af
Pond CB-27A: CB-27A	Peak Storage= 5 cf Inflow= 0.46 cfs 0.033 af Primary= 0.46 cfs 0.033 af Outflow= 0.46 cfs 0.033 af
Pond CB-27B: CB-27.B	Peak Storage= 34 cf Inflow= 10.06 cfs 1.056 af Primary= 10.06 cfs 1.056 af Outflow= 10.06 cfs 1.056 af
Pond CB-28: CB-28	Peak Storage= 48 cf Inflow= 12.79 cfs 1.335 af Primary= 12.79 cfs 1.335 af Outflow= 12.79 cfs 1.335 af
Pond CB-28A: CB-28A	Peak Storage= 38 cf Inflow= 10.34 cfs 1.098 af Primary= 10.35 cfs 1.098 af Outflow= 10.35 cfs 1.098 af
Pond CB-3: CB-3	Peak Storage= 18 cf Inflow= 2.46 cfs 0.190 af Primary= 2.46 cfs 0.190 af Outflow= 2.46 cfs 0.190 af
Pond CB-4: CB-4	Peak Storage= 26 cf Inflow= 3.67 cfs 0.284 af Primary= 3.69 cfs 0.284 af Outflow= 3.69 cfs 0.284 af
Pond CB-6: CB-6	Peak Storage= 29 cf Inflow= 4.30 cfs 0.417 af Primary= 4.30 cfs 0.417 af Outflow= 4.30 cfs 0.417 af
Pond CB-7: CB-7	Peak Storage= 32 cf Inflow= 9.47 cfs 0.974 af Primary= 9.46 cfs 0.974 af Outflow= 9.46 cfs 0.974 af
Pond CB-7A: CB-7A	Peak Storage= 16 cf Inflow= 2.61 cfs 0.277 af Primary= 2.61 cfs 0.277 af Outflow= 2.61 cfs 0.277 af
Pond CB-9: CB-9	Peak Storage= 36 cf Inflow= 15.87 cfs 1.596 af Primary= 15.87 cfs 1.596 af Outflow= 15.87 cfs 1.596 af
Pond CB-9A: CB-9A	Peak Storage= 16 cf Inflow= 2.68 cfs 0.255 af Primary= 2.68 cfs 0.255 af Outflow= 2.68 cfs 0.255 af
Pond DMH-1: DMH-1	Peak Storage= 76 cf Inflow= 44.88 cfs 4.491 af Primary= 44.92 cfs 4.491 af Outflow= 44.92 cfs 4.491 af
Pond DMH-2: DMH-2	Peak Storage= 22 cf Inflow= 3.52 cfs 0.376 af Primary= 3.52 cfs 0.376 af Outflow= 3.52 cfs 0.376 af
Pond DMH-3: DMH-3	Peak Storage= 61 cf Inflow= 12.79 cfs 1.335 af Primary= 12.80 cfs 1.335 af Outflow= 12.80 cfs 1.335 af
Pond Forbay 1: FORBAY 1	Peak Storage= 1,155 cf Inflow= 3.69 cfs 0.284 af Primary= 3.65 cfs 0.262 af Outflow= 3.65 cfs 0.262 af

Carver Court Prepared by {enter your company name here} HydroCAD® 6.00 s/n 000694 © 1986-2001 Applied Mi	TYPEII~2 Rainfall=6.60" 100 Year Storm Page 10 crocomputer Systems 5/26/2021
Pond PLUNG 2: PLUNGE 2	Peak Storage= 1,577 cf Inflow= 6.72 cfs 0.698 af Primary= 6.69 cfs 0.676 af Outflow= 6.69 cfs 0.676 af
Pond PLUNGE 1: PLUNGE 1	Peak Storage= 2,559 cf Inflow= 16.50 cfs 1.695 af Primary= 16.48 cfs 1.652 af Outflow= 16.48 cfs 1.652 af
Pond PLUNGE 4: PLUNGE 4	Peak Storage= 16,367 cf Inflow= 3.52 cfs 0.376 af Primary= 0.00 cfs 0.000 af Outflow= 0.00 cfs 0.000 af
Pond PLUNGE 5: PLUNGE 5	Peak Storage= 6,231 cf Inflow= 12.80 cfs 1.335 af Primary= 12.23 cfs 1.258 af Outflow= 12.23 cfs 1.258 af

Runoff Area = 177.476 ac Volume = 60.009 af Average Depth = 4.06"

Subcatchment D--1: D-1

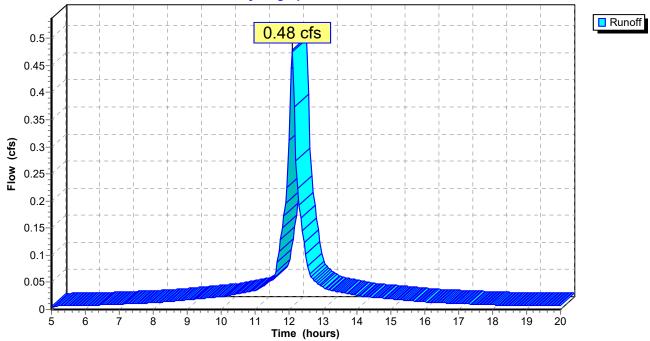

Page 11 5/26/2021

Runoff 0.62 cfs @ 12.09 hrs, Volume= 0.048 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN	Description		
	4,262	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN

Subcatchment D--1: D-1



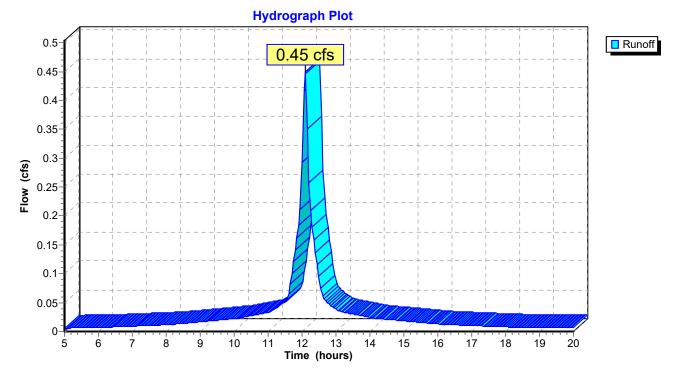
Subcatchment D-10: D-10

Runoff = 0.48 cfs @ 12.09 hrs, Volume= 0.037 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN	Description				
	3,302	98 Paved parking & roofs					
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
6.0	Direct Entry, TR55 MIN						
	Subcatchment D-10: D-10						
Hydrograph Plot							

Subcatchment D-11: D-11


Page 13 5/26/2021

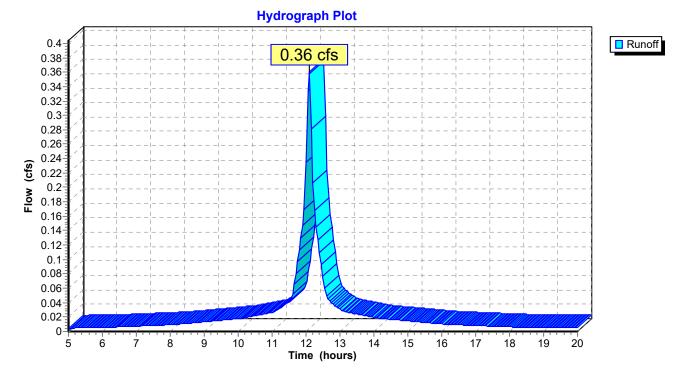
Runoff 0.45 cfs @ 12.09 hrs, Volume= 0.035 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN [Description					
	3,099	98 F	98 Paved roads w/curbs & sewers					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, TR 55 MIN			

Subcatchment D-11: D-11

Subcatchment D-11A: D-11A

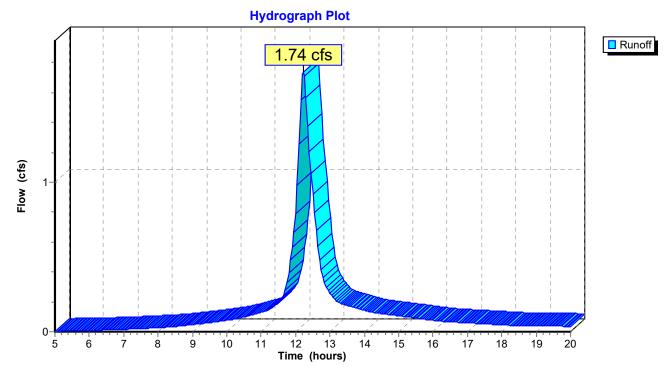

Page 14 5/26/2021

Runoff 0.36 cfs @ 12.09 hrs, Volume= 0.028 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN	Description		
	2,486	98			
Tc _(min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN

Subcatchment D-11A: D-11A

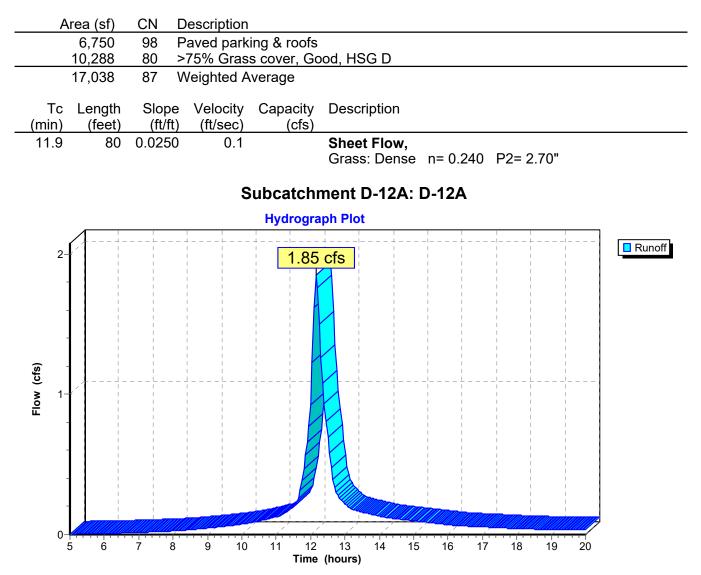

Subcatchment D-12: D-12

Runoff 1.74 cfs @ 12.22 hrs, Volume= 0.166 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN [Description					
	7,375	98 F	Paved parking & roofs					
	10,678	80 >	•75% Gras	s cover, Go	ood, HSG D			
	18,053	87 \	Veighted A	verage				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
16.3	75	0.0100	0.1		Sheet Flow,			
0.3	50	0.0150	2.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
16.6	125	Total						

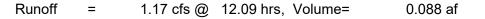
Subcatchment D-12: D-12

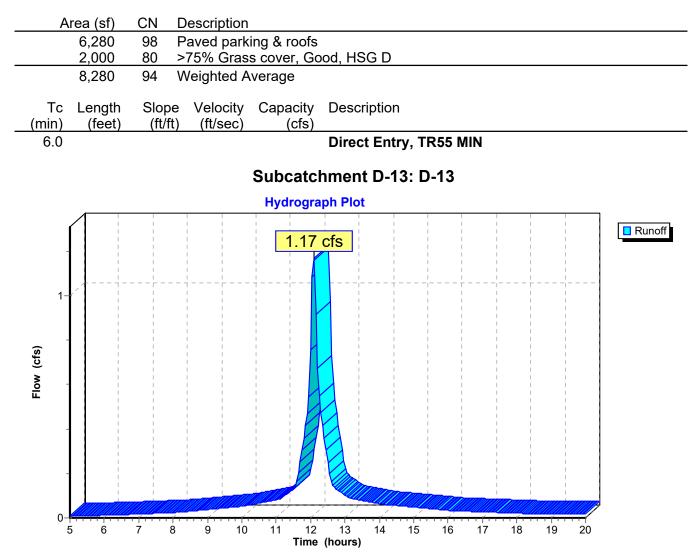

Subcatchment D-12A: D-12A

Page 16

5/26/2021

Runoff 1.85 cfs @ 12.16 hrs, Volume= = 0.157 af

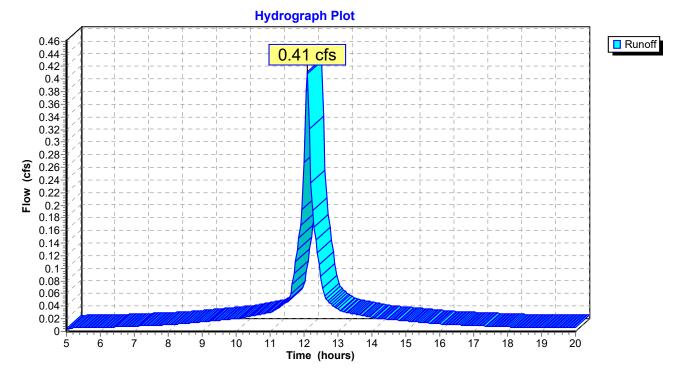

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"



Subcatchment D-13: D-13

Page 17

5/26/2021

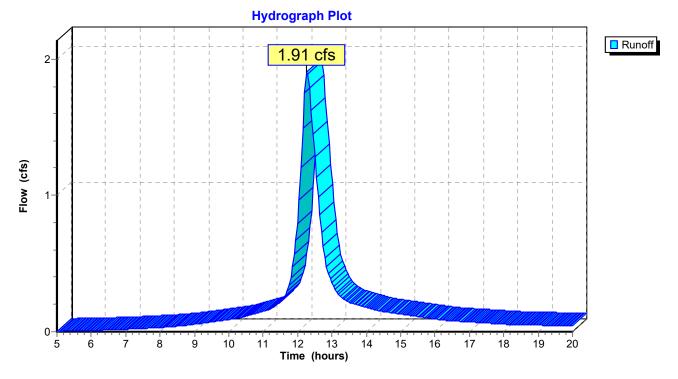

Subcatchment D-13A: D-13A

Runoff 0.41 cfs @ 12.09 hrs, Volume= 0.032 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN	Description		
	2,837	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN

Subcatchment D-13A: D-13A


Subcatchment D-14: D-14

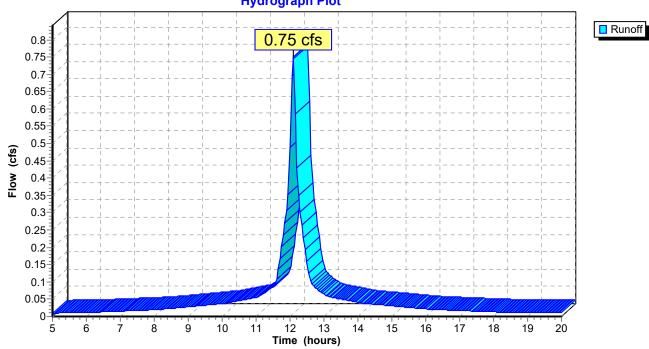
Runoff 1.91 cfs @ 12.28 hrs, Volume= 0.198 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	vrea (sf)	CN D	Description			
	8,000	98 F	aved park	ing & roofs		
	13,592	80 >	75% Gras	s cover, Go	ood, HSG D	
	21,592	87 V	Veighted A	verage		
Tc	5	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
20.5	100	0.0100	0.1		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.70"	
0.2	25	0.0100	2.0		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
20.7	125	Total				

Subcatchment D-14: D-14

Subcatchment D-14A: D-14A


Page 20

Runoff 0.75 cfs @ 12.09 hrs, Volume= 0.058 af =

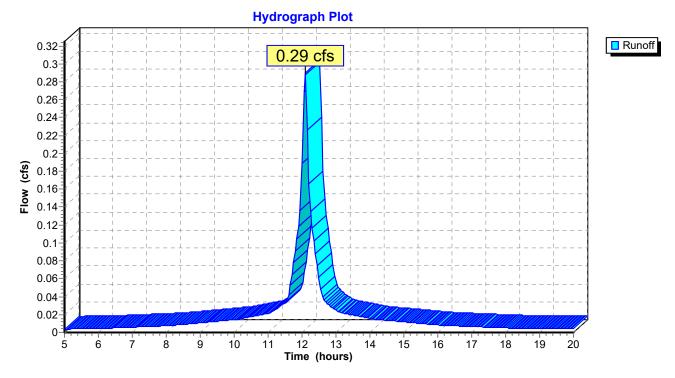
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Area	a (sf)	CN	Description		
5	5,177	98	Paved parki	ing & roofs	
Tc L (min)	ength (feet)	Slope (ft/ft)		Capacity (cfs)	Description
6.0					Direct Entry, TR55 MIN

Subcatchment D-14A: D-14A

Hydrograph Plot

Page 21

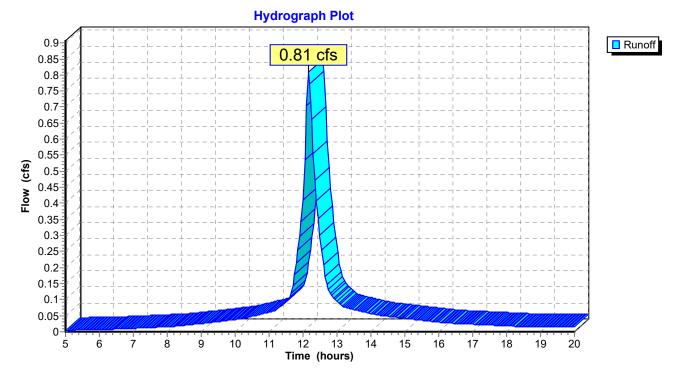

5/26/2021

Runoff 0.29 cfs @ 12.09 hrs, Volume= = 0.022 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Α	rea (sf)	CN	Description		
	2,000	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
6.0					Direct Entry, tr 55 MIN

Subcatchment D-15: D-15


Subcatchment D-15A: D-15A

Runoff 0.81 cfs @ 12.16 hrs, Volume= 0.071 af =

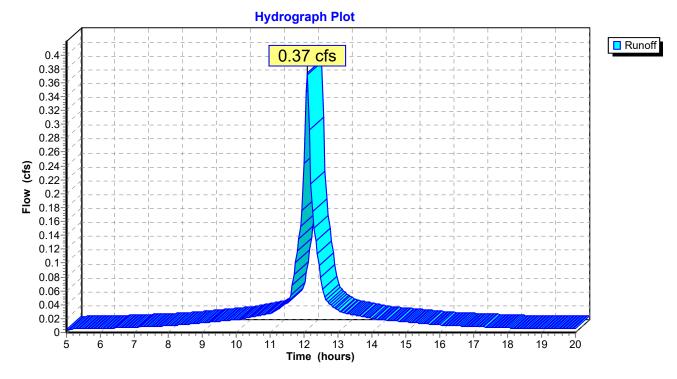
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

	Α	rea (sf)	CN	Description			
		4,300	98	Paved park	ing & roofs		
		2,750	80	>75% Gras	s cover, Go	ood, HSG D	
		7,050	91	Weighted A	verage		
	Tc in)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
11	1.8	50	0.0100	0.1		Sheet Flow,	
().3	75	0.0500) 4.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
12	2.1	125	Total				

Subcatchment D-15A: D-15A

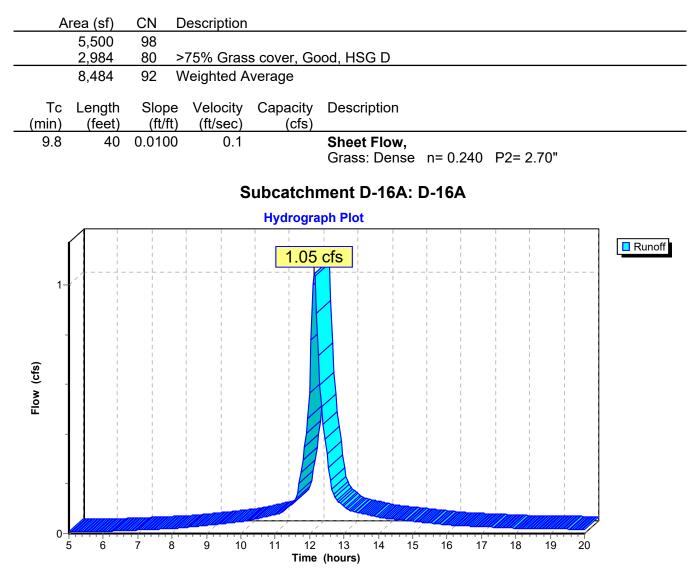
Subcatchment D-16: D-16

Page 23


5/26/2021

Runoff 0.37 cfs @ 12.09 hrs, Volume= 0.029 af =

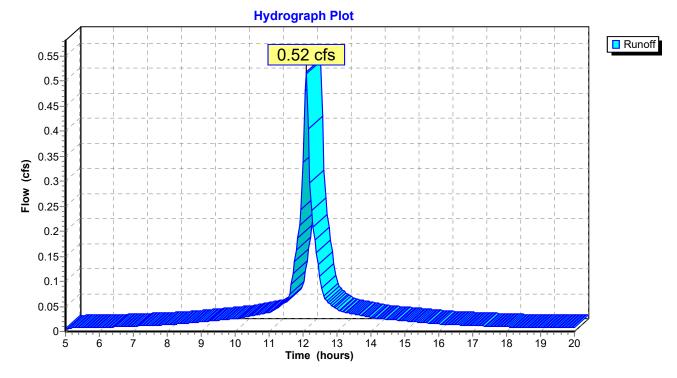
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"


	Aı	rea (sf)	CN	Des	scription		
		2,580	98	Pav	ved parki	ng & roofs	
T (min	c 1)	Length (feet)	Slop (ft/1		/elocity (ft/sec)	Capacity (cfs)	Description
6.	0						Direct Entry, tr 55 MIN

Subcatchment D-16: D-16

Subcatchment D-16A: D-16A

Runoff = 1.05 cfs @ 12.13 hrs, Volume= 0.087 af

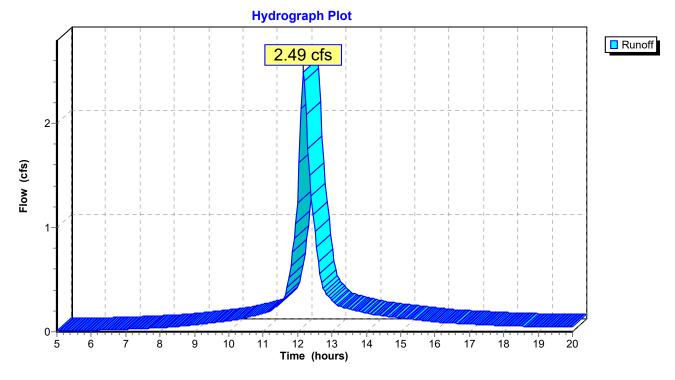

Subcatchment D-17: D-17

Runoff = 0.52 cfs @ 12.09 hrs, Volume= 0.040 af

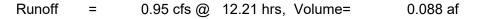
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

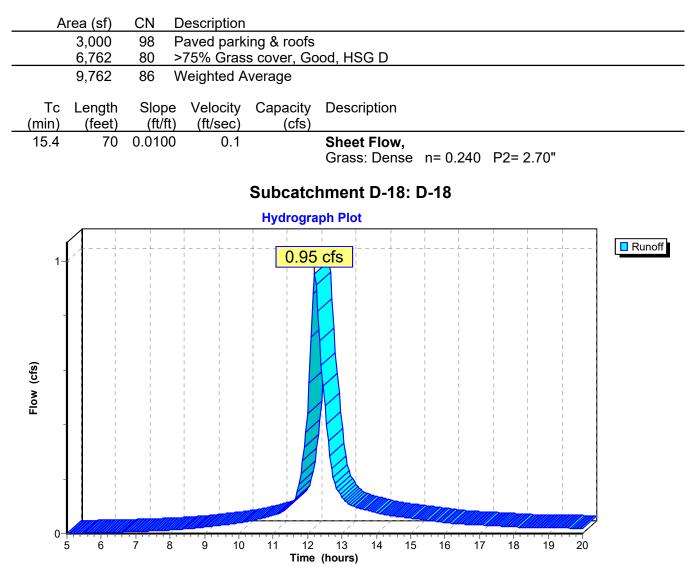
Ar	ea (sf)	CN	Description		
	3,577	98	Paved park	ing & roofs	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
6.0					Direct Entry, TR 55 MIN

Subcatchment D-17: D-17


Subcatchment D-17A: D-17A

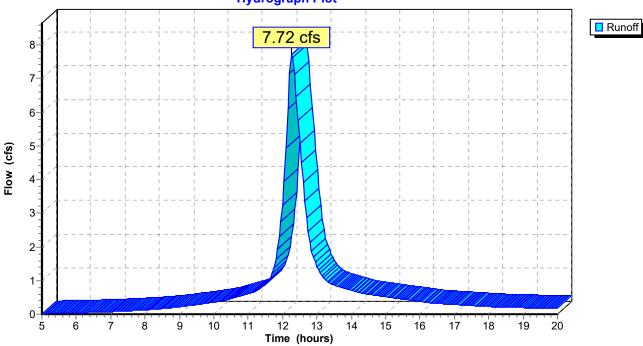
-2.4303(0) $-2.130(0)$	Runoff	=	2.49 cfs @	12.17 hrs, Volume=	0.215 af
------------------------	--------	---	------------	--------------------	----------


Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"


_	A	rea (sf)	CN	Description			
		10,500	98	Paved road	s w/curbs &	& sewers	
_		12,359	80	>75% Gras	s cover, Go	ood, HSG D	
		22,859	88	Weighted A	verage		
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description	
	11.8	50	0.0100	0.1		Sheet Flow,	
	0.6	150	0.0400) 4.1		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
	12.4	200	Total				

Subcatchment D-17A: D-17A

Subcatchment D-18: D-18

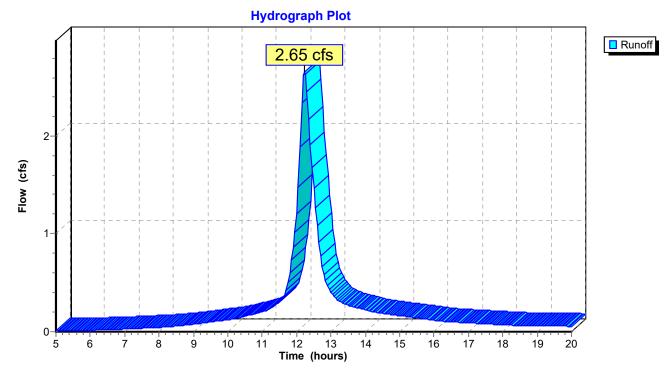

Subcatchment D-18B: D-18

Runoff =	7.72 cfs @	12.27 hrs, Volume=	0.795 af
----------	------------	--------------------	----------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

	Α	rea (sf)	CN	Description		
		34,270	98	Paved park	ing & roofs	
		52,349	80	>75% Ġras	s cover, Go	bod, HSG D
		86,619	87	Weighted A	verage	
	Тс	Length	Slope	e Velocity	Capacity	Description
	in)	(feet)	(ft/ft	,	(cfs)	Decemption
17	7.7	100	0.0400	0.1		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 2.70"
1	1.9	100	0.0300	0.9		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
C).7	180	0.0500) 4.5		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
20).3	380	Total			

Subcatchment D-18B: D-18

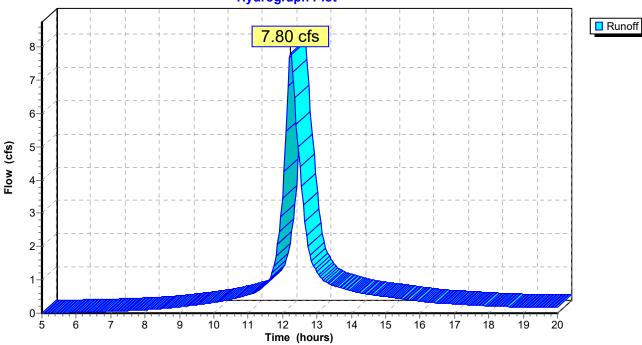

Hydrograph Plot

Subcatchment D-19: D-19

Runoff 2.65 cfs @ 12.23 hrs, Volume= 0.258 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Subcatchment D-19: D-19


Subcatchment D-19A: D-19A

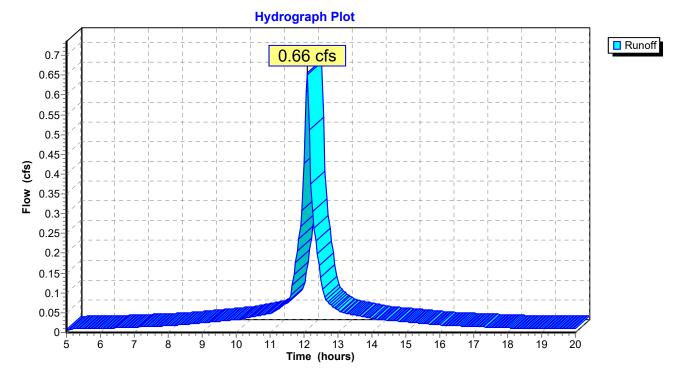
Runoff	=	7.80 cfs @	12.23 hrs, Volume=	0.748 af
--------	---	------------	--------------------	----------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

/	Area (sf)	CN [Description			
	22,500	98 F	Paved park	ing & roofs		
	62,819	80 >	>75% Gras	s cover, Go	bod, HSG D	
	85,319	85 \	Neighted A	verage		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
14.2	100	0.0250	0.1		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.70"	
2.3	292	0.0200	2.1		Shallow Concentrated Flow,	
					Grassed Waterway Kv= 15.0 fps	
0.8	100	0.0100	2.0		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
17.3	492	Total				

Subcatchment D-19A: D-19A

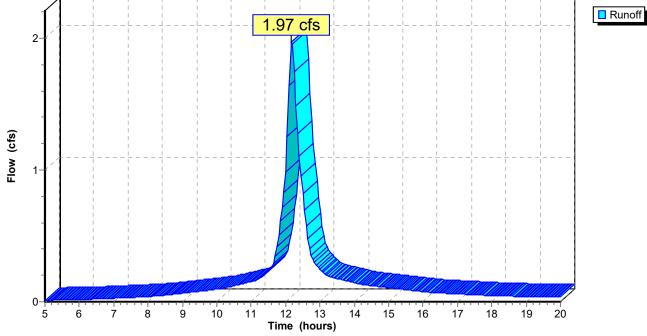
Hydrograph Plot


Subcatchment D-2: D-2

Runoff 0.66 cfs @ 12.09 hrs, Volume= 0.051 af =

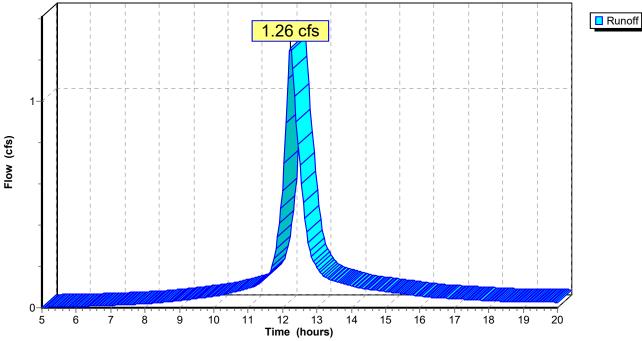
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Area (sf)	CN Description	
4,523	98 Paved parking & ro	ofs
Tc Length (min) (feet)	Slope Velocity Capac (ft/ft) (ft/sec) (c	
6.0		Direct Entry, TR55 MIN


Subcatchment D-2: D-2

Subcatchment D-20: D-20

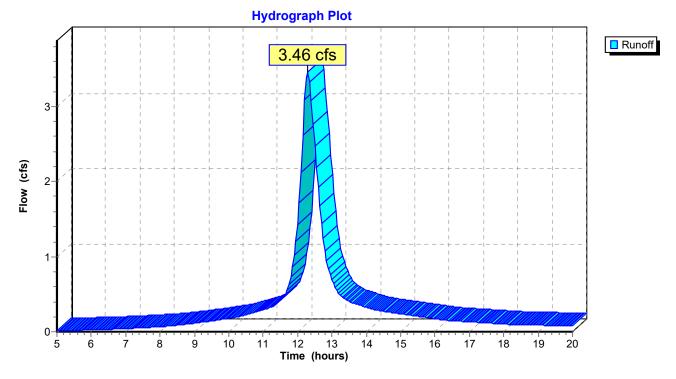
Runoff 1.97 cfs @ 12.18 hrs, Volume= 0.179 af =


 A	rea (sf)	CN E	escription					
	11,110	98 F	aved park	ing & roofs				
	6,757	80 >	75% Gras	s cover, Go	ood, HSG D			
	17,867	91 V	Veighted A	verage				
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
11.8	50	0.0100	0.1		Sheet Flow,			
 1.6	200	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
13.4	250	Total						
				Subcatcl	hment D-20: D-20			
		1	1 1	1.37				

Subcatchment D-21: D-21

Runoff	=	1.26 cfs @	12.23 hrs, Volume=	0.121 af
--------	---	------------	--------------------	----------

_	A	rea (sf)	CN E	Description							
		5,250	50 98 Paved roads w/curbs & sewers								
_		7,951	80 >	75% Gras	s cover, Go	bod, HSG D					
		13,201	87 V	Veighted A	verage						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	16.3	75	0.0100	0.1		Sheet Flow,					
	0.8	150	0.0250	3.2		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
	17.1	225	Total								
					Subcatc Hydrogra	hment D-21: D-21 aph Plot					

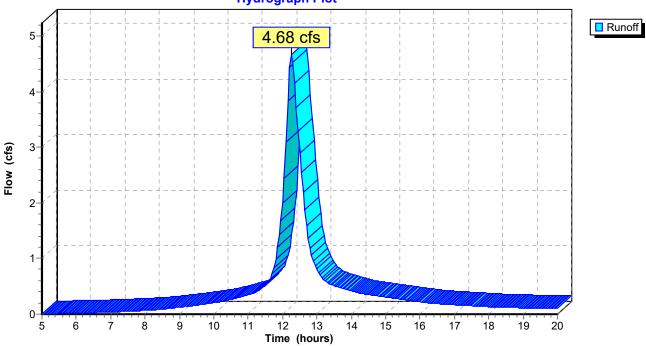

Subcatchment D-21A: D-21A

Runoff 3.46 cfs @ 12.29 hrs, Volume= 0.372 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	A	rea (sf)	CN	Description			
		19,000	98	Paved park	ing & roofs		
_		19,849	80	>75% Gras	s cover, Go	ood, HSG D	
		38,849	89	Weighted A	verage		
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description	
_	20.5	100	0.010	0.1		Sheet Flow,	
	1.5	400	0.050	0 4.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
	22.0	500	Total				

Subcatchment D-21A: D-21A


Subcatchment D-21C: D-21C

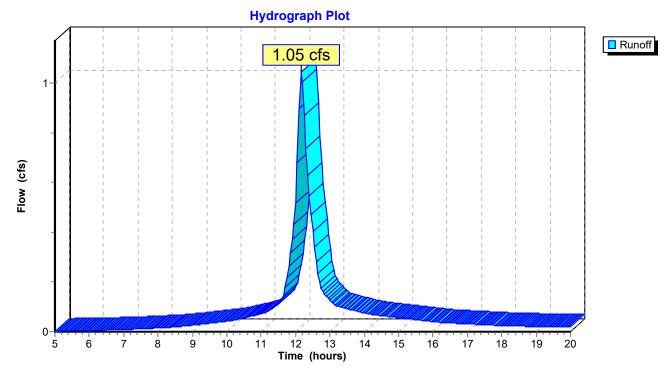
Runoff 4.68 cfs @ 12.26 hrs, Volume= 0.467 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Area	(ac) C	N Desc	cription			
-			ed parking			
0.	<u>.810 8</u>	<u>80 >759</u>	<u>% Grass co</u>	over, Good	, HSG D	
1.	.196 8	6 Weig	ghted Aver	age		
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
17.4	100	0.0150	0.1		Sheet Flow,	
					Grass: Dense n= 0.240 P2= 2.70"	
0.7	80	0.0150	1.8		Shallow Concentrated Flow,	
					Grassed Waterway Kv= 15.0 fps	
1.0	275	0.0500	4.5		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
19.1	455	Total			·	

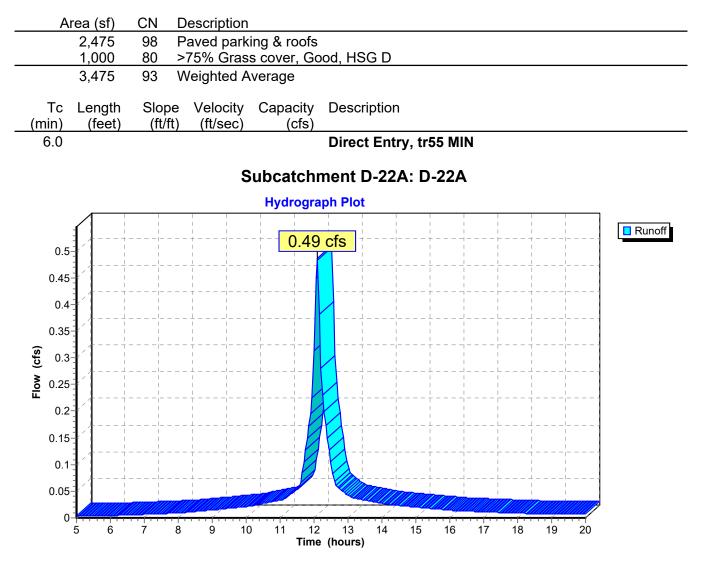
Subcatchment D-21C: D-21C

Hydrograph Plot


Subcatchment D-22: D-22

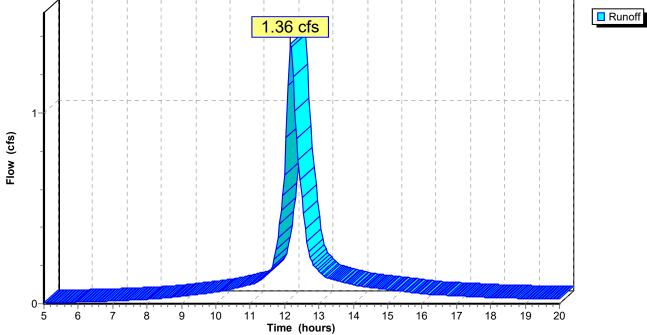
Runoff 1.05 cfs @ 12.17 hrs, Volume= 0.089 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"


_	A	rea (sf)	CN [Description						
		4,011	98 F	Paved park	ing & roofs					
_		5,702	80 >	>75% Gras	s cover, Go	ood, HSG D				
		9,713	87 N	37 Weighted Average						
	Tc	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	11.8	50	0.0100	0.1		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 2.70"				
	0.5	100	0.0250	3.2		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	12.3	150	Total							

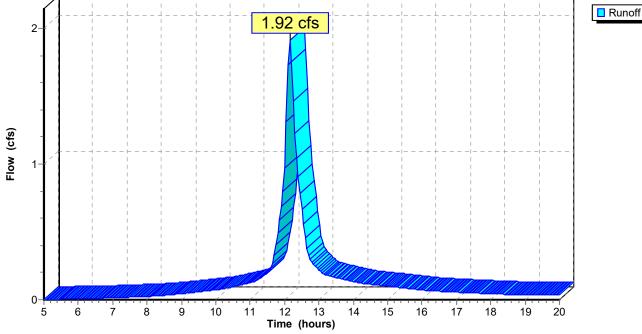
Subcatchment D-22: D-22

Subcatchment D-22A: D-22A


Runoff 0.49 cfs @ 12.09 hrs, Volume= = 0.036 af

Subcatchment D-23: D-23

Runoff 1.36 cfs @ 12.18 hrs, Volume= 0.121 af =

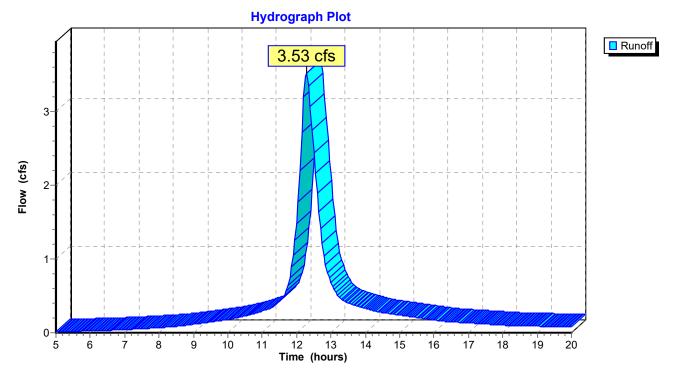

	Area (sf)	CN E	Description						
	6,000 98 Paved parking & roofs								
	6,626 80 >75% Grass cover, Good, HSG D								
	12,626	89 V	Veighted A	verage					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-				
11.8	50	0.0100	0.1		Sheet Flow,				
	0.50				Grass: Dense n= 0.240 P2= 2.70"				
1.3	250	0.0250	3.2		Shallow Concentrated Flow, Paved Kv= 20.3 fps				
13.1	300	Total							
	Subcatchment D-23: D-23 Hydrograph Plot								
		1				Rupoff			

Subcatchment D-23A: D-23A

Runoff 1.92 cfs @ 12.15 hrs, Volume= 0.157 af =

Area	(ac) C	N Dese	cription						
0.	126 9	8 Pave	ed parking	& roofs					
0.	.275 8	<u>30 >759</u>	% Grass co	over, Good	, HSG D				
0.	.401 8	36 Weig	ghted Aver	age					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.5	75	0.0300	0.1		Sheet Flow,				
0.5	100	0.0250	3.2		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps				
11.0	175	Total							
Subcatchment D-23A: D-23A Hydrograph Plot									
2-				1.92	CIS				

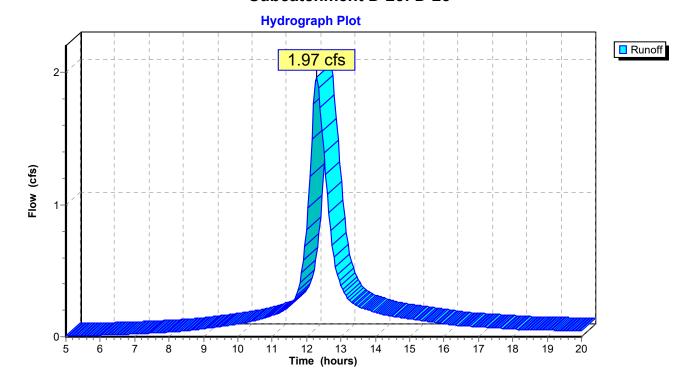
Subcatchment D-24: D-24


Page 40 5/26/2021

Runoff 3.53 cfs @ 12.28 hrs, Volume= 0.376 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

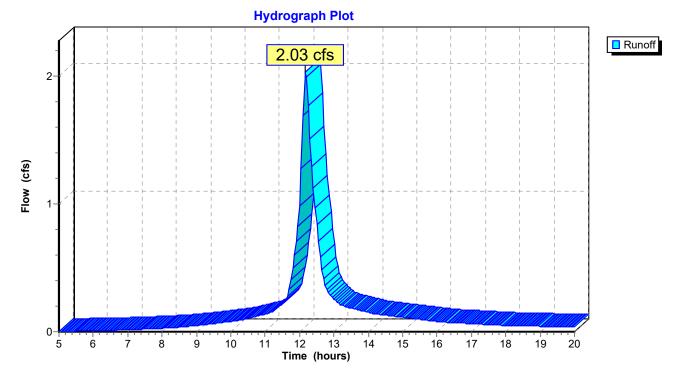
_	A	rea (sf)	CN	Description			
		20,500	98	Paved park	ing & roofs		
_		18,739	80	>75% Gras	s cover, Go	ood, HSG D	
		39,239	89	Weighted A	verage		
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	
	20.5	100	0.0100	0.1		Sheet Flow,	
_	0.9	200	0.0300	3.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
	21.4	300	Total				


Subcatchment D-24: D-24

Subcatchment D-25: D-25

Runoff =	1.97 cfs @	12.29 hrs, Volume=	0.210 af
----------	------------	--------------------	----------

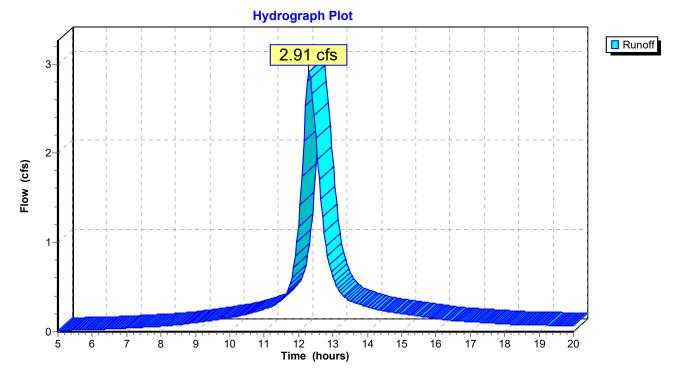
A	rea (sf)	CN	Description							
	10,500 98 Paved parking & roofs									
	bod, HSG D									
	22,353	88	Weighted A	verage						
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
20.5	100	0.0100	0.1		Sheet Flow,					
1.2	150	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
21.7	250	Total								
	Subcatchment D-25: D-25									


Subcatchment D-25A: D-25A

Runoff 2.03 cfs @ 12.17 hrs, Volume= 0.176 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

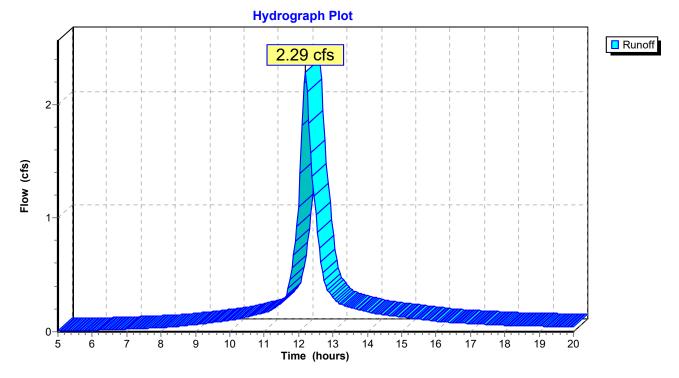
_	A	rea (sf)	CN	Description								
		7,000	98	98 Paved parking & roofs								
_		12,613	80	>75% Gras	s cover, Go	ood, HSG D						
		19,613	9,613 86 Weighted Average									
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description						
-	11.8	50	0.0100	0.1		Sheet Flow,						
	1.2	150	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps						
	13.0	200	Total									


Subcatchment D-25A: D-25A

Subcatchment D-26: D-26

2.91 cfs @ 12.31 hrs, Volume= Runoff 0.322 af =

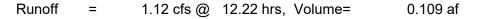
	Α	rea (sf)	CN	D	escription						
17,750 98 Paved parking & roofs											
		15,108	80	>7	75% Grass	s cover, Go	ood, HSG D				
		32,858	90	W	eighted A	verage					
Tc Length Slope (min) (feet) (ft/ft)			Velocity (ft/sec)	Capacity (cfs)	Description						
20	.5	100	0.010	0	0.1		Sheet Flow,				
2	.5	300	0.010	0	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps				
23	.0	400	Total								
	Subcatchment D-26: D-26										

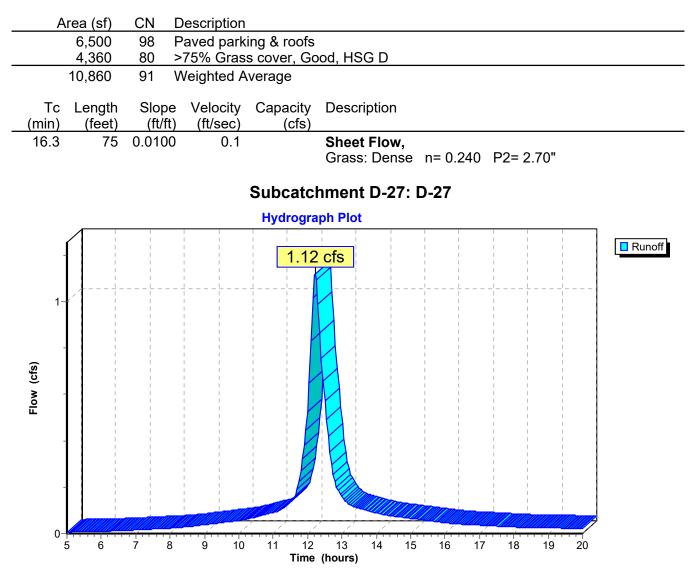

Subcatchment D-26A: D-26A

Runoff 2.29 cfs @ 12.19 hrs, Volume= 0.207 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

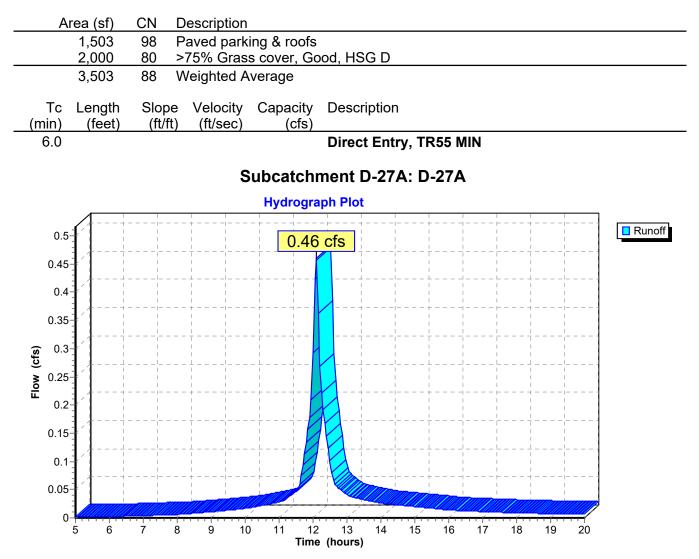
_	A	rea (sf)	CN I	Description							
_		9,250	98 I	98 Paved parking & roofs							
_		12,827	80 ;	>75% Gras	s cover, Go	ood, HSG D					
22,077 88 Weighted Average											
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
_	11.8	50	0.0100	0.1		Sheet Flow,					
	2.5	300	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
_	14.3	350	Total								


Subcatchment D-26A: D-26A



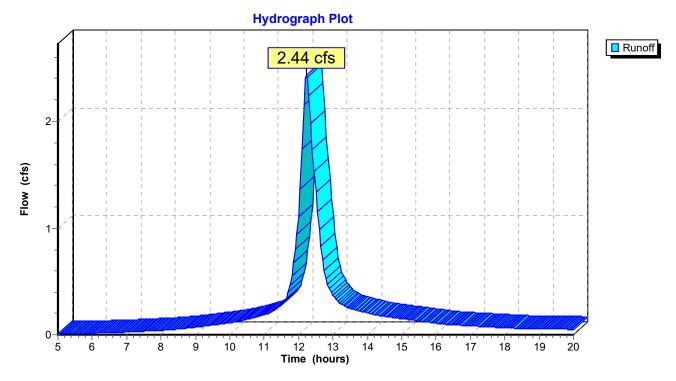
Subcatchment D-27: D-27

Page 45


5/26/2021

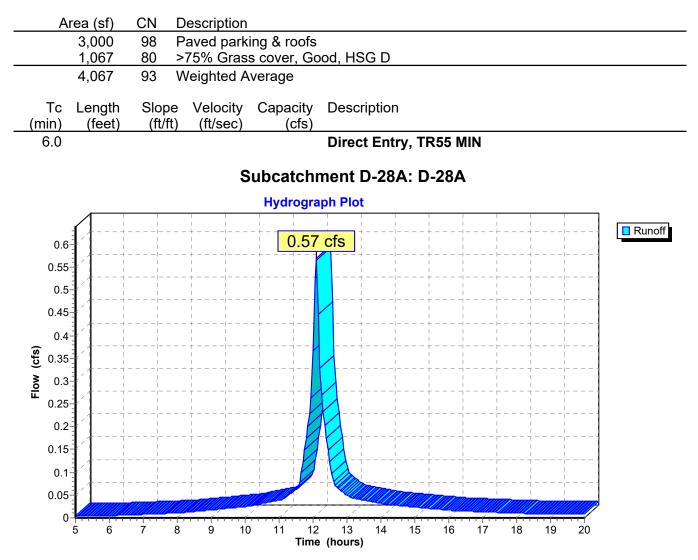
Subcatchment D-27A: D-27A

Runoff = 0.46 cfs @ 12.09 hrs, Volume= 0.033 af



Subcatchment D-28: D-28

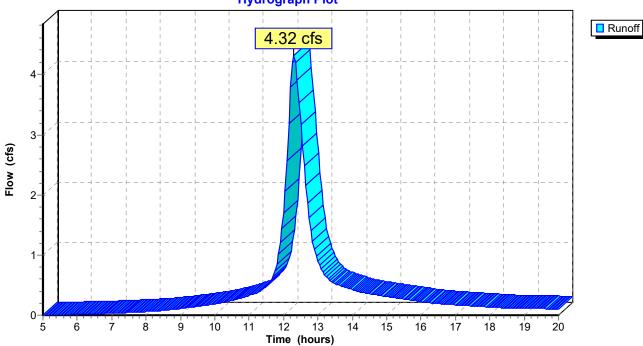
Page 47 5/26/2021


2.44 cfs @ 12.23 hrs, Volume= Runoff 0.237 af =

A	rea (sf)	CN	Description							
	11,000	98	98 Paved parking & roofs							
	14,225	80	>75% Gras	s cover, Go	bod, HSG D					
	25,225	88	Weighted A	verage						
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description					
16.3	75	0.010	0.1		Sheet Flow,					
0.8	100	0.010) 2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
17.1	175	Total								
	Subcatchment D-28: D-28									

Subcatchment D-28A: D-28A

Runoff = 0.57 cfs @ 12.09 hrs, Volume= 0.042 af


Subcatchment D-2OA: D-20A

Runoff	=	4.32 cfs @	12.30 hrs, Volume=	0.457 af
--------	---	------------	--------------------	----------

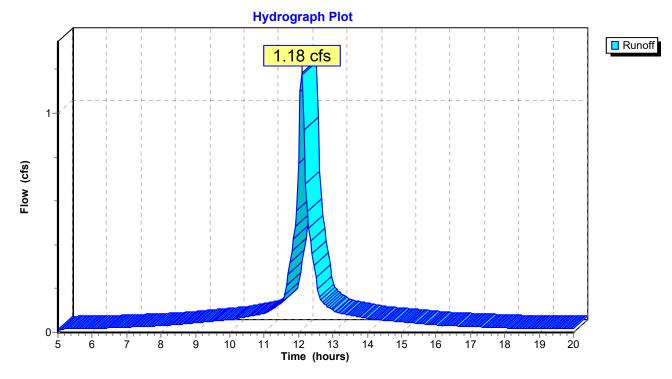
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	A	rea (sf)	CN I	Description		
		15,000	98	Paved road	s w/curbs &	& sewers
_		37,267	80 3	>75% Gras	s cover, Go	bod, HSG D
		52,267	85	Neighted A	verage	
				-	-	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	20.5	100	0.0100	0.1		Sheet Flow,
						Grass: Dense n= 0.240 P2= 2.70"
	1.1	100	0.0100	1.5		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	0.7	80	0.0100	2.0		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	22.3	280	Total			

Subcatchment D-2OA: D-20A

Hydrograph Plot

Subcatchment D-3: D-3


Page 50 5/26/2021

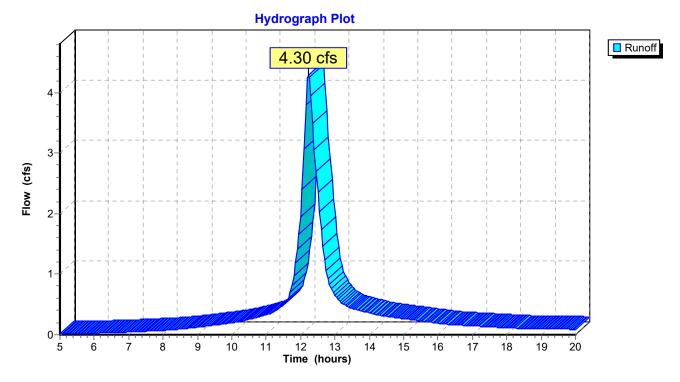
Runoff 1.18 cfs @ 12.09 hrs, Volume= 0.092 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN E	Description						
	8,167	98 F	98 Paved roads w/curbs & sewers						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, TR55 MIN				

Subcatchment D-3: D-3

Subcatchment D-4: D-4

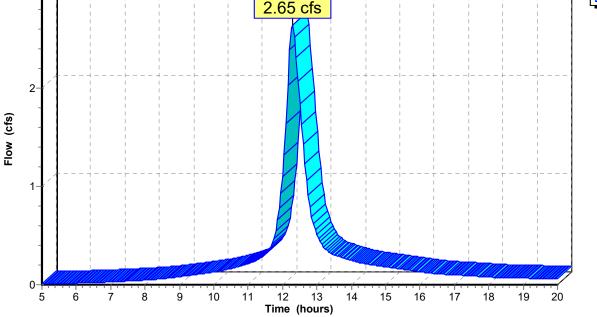

Runoff = 1.21 cfs @ 12.09 hrs, Volume= 0.093 af

Tc (min)	ea (sf) 8,318 Length (feet)	CN E 98 Slope (ft/ft)	Description Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry, TR55 MIN		
				Subcat	hment D-4: D-4		
Elow (cfs)				Hydrogra			
5	6	7 8	9 10	11 12 Time	13 14 15 16 17 hours)	18 19	20

Subcatchment D-6: D-6

Runoff 4.30 cfs @ 12.23 hrs, Volume= 0.417 af =

A	rea (sf)	CN	Description							
	18,800	8,800 98 Paved parking & roofs								
	25,626	80	>75% Gras	s cover, Go	bod, HSG D					
	44,426	88	Weighted A	verage						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
16.3	75	0.0100	0.1		Sheet Flow,					
0.8	100	0.0100	2.0		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
17.1	175	Total								
	Subcatchment D-6: D-6									

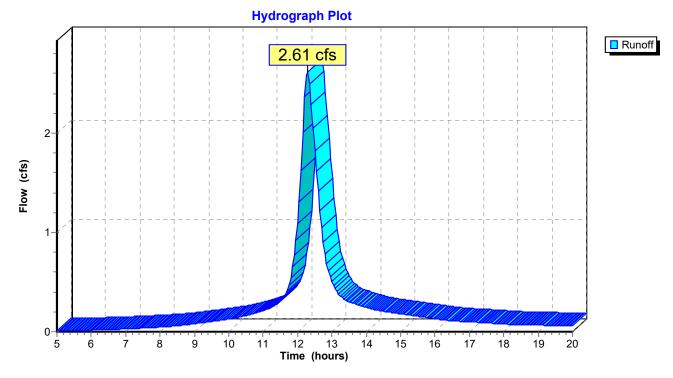


Subcatchment D-7: D-7

Runoff 2.65 cfs @ 12.29 hrs, Volume= 0.281 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	CN E	Description		
12,500 98 Paved parking & roofs					
	17,422	80 >	75% Gras	s cover, Go	ood, HSG D
	29,922	88 V	Veighted A	verage	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
20.5	100	0.0100	0.1		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.70"
0.9	200	0.0300	3.5		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
21.4	300	Total			
				Subcate Hydrogra	chment D-7: D-7 ph Plot
-				2.65	Cfs Runoff
-					

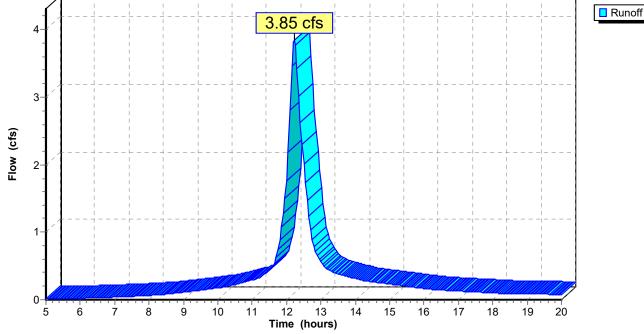

Subcatchment D-7A: D-7A

Runoff 2.61 cfs @ 12.29 hrs, Volume= 0.277 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Are	ea (sf)	CN [Description			
12,500 98 Paved parking & roofs						
17,000 80 >75% Grass cover, Good, HSG D						
29,500 88 Weighted Average						
Tc I (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
20.5	100	0.0100	0.1		Sheet Flow,	
0.9	200	0.0300	3.5		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
21.4	300	Total				

Subcatchment D-7A: D-7A

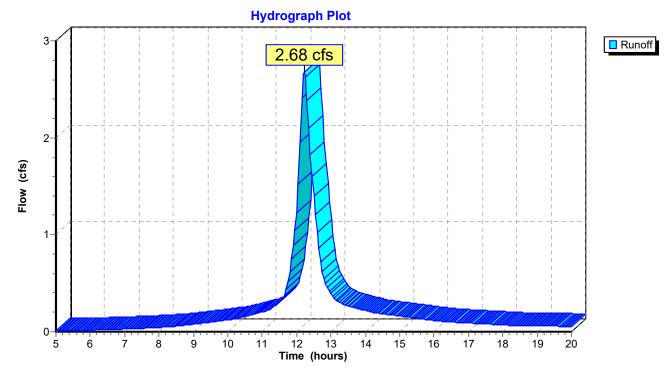


Subcatchment D-9: D-9

Runoff 3.85 cfs @ 12.22 hrs, Volume= 0.367 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	A	rea (sf)	CN [Description		
		16,500	98 F	Paved park	ing & roofs	
_		22,540	80 >	•75% Ġras	s cover, Go	bod, HSG D
		39,040	88 V	Veighted A	verage	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	15.4	70	0.0100	0.1		Sheet Flow,
	1.0	200	0.0250	3.2		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	16.4	270	Total			
		4			Subcate Hydrogra	chment D-9: D-9 aph Plot
	-		<mark> </mark>			

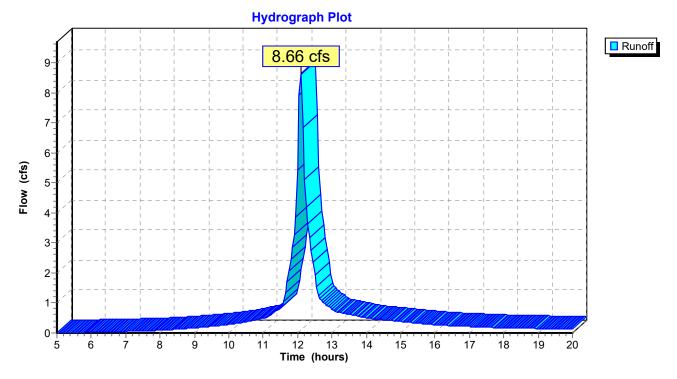

Subcatchment D-9A: CB-9A

Runoff 2.68 cfs @ 12.22 hrs, Volume= 0.255 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	A	rea (sf)	CN	Description						
		12,500	98	98 Paved parking & roofs						
_		14,689	80							
		27,189	88	Weighted A	verage					
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)		(cfs)	Description				
	15.4	70	0.0100	0.1		Sheet Flow,				
_	1.0	200	0.0250	3.2		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Paved Kv= 20.3 fps				
_	16.4	270	Total							

Subcatchment D-9A: CB-9A


Subcatchment D-DMH-1: D-DMH-1

Runoff = 8.66 cfs @ 12.09 hrs, Volume= 0.609 af

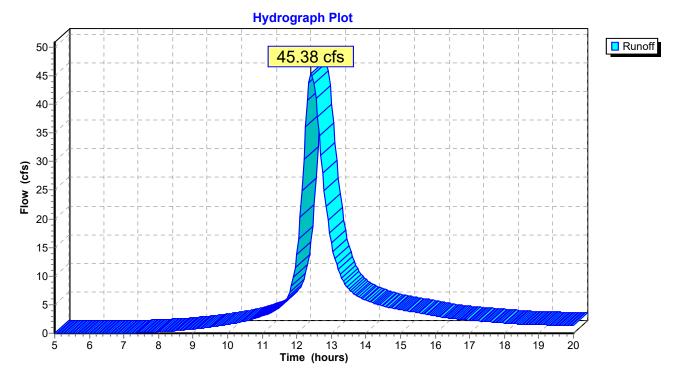
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

	Area (sf)	CN	Description						
	18,600	98	Paved parking & roofs						
	50,637	80	>75% Grass cover, Good, HSG D						
	69,237	85	Weighted A						
To (min		Slope (ft/ft		Capacity (cfs)	Description				
4.3	3 40	0.0800	0.2		Sheet Flow,				
					Grass: Dense n= 0.240 P2= 2.70"				
1.	7				Direct Entry, MAKE TR 55 6 MIN MIN				
6.0	D 40	Total							

Subcatchment D-DMH-1: D-DMH-1

Subcatchment EX-1: EX-1

Page 58 5/26/2021


Runoff 45.38 cfs @ 12.42 hrs, Volume= = 5.377 af

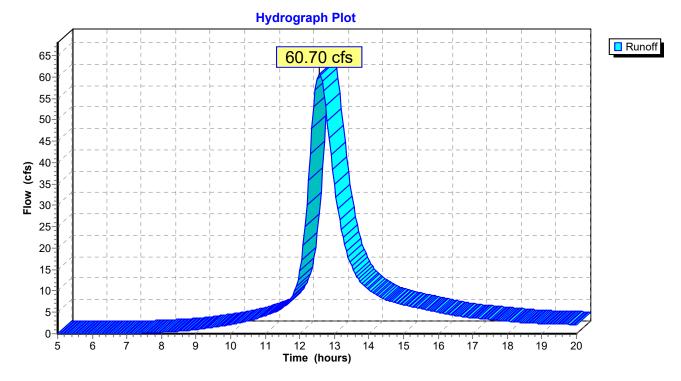
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	Area	(ac) C	N Des	cription		
16.430 79 Woods, Fair, HSG D						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	14.2	100	0.0700	0.1		Sheet Flow,
	16.4	1,100	0.0500	1.1		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps

30.6 1,200 Total

Subcatchment EX-1: EX-1

Subcatchment EX-2: EX-2


Runoff =	60.70 cfs @	12.57 hrs, Volume=	8.319 af
----------	-------------	--------------------	----------

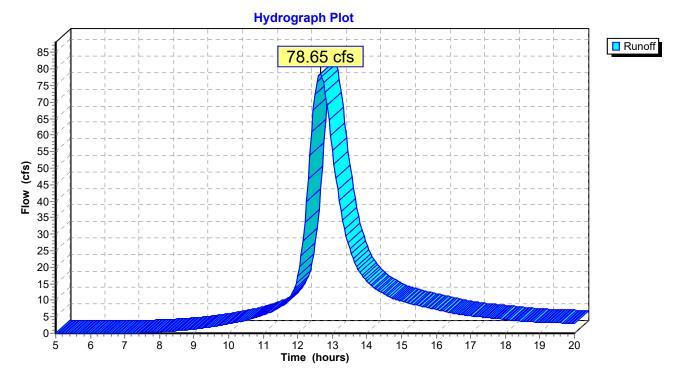
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	Area	(ac) C	N Dese	cription		
	25.	510 7	79 Woo	ds, Fair, H	ISG D	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	21.4	100	0.0250	0.1		Sheet Flow,
	47.0	4 0 0 0				Woods: Light underbrush n= 0.400 P2= 2.70"
	17.8	1,000	0.0350	0.9		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	2.4	1,000	0.0350	7.0	35.17	Channel Flow,
_		•				Area= 5.0 sf Perim= 6.0' r= 0.83' n= 0.035
	44.0	0 4 0 0	— · ·			

41.6 2,100 Total

Subcatchment EX-2: EX-2

Subcatchment EX-3: EX-3


Runoff 78.65 cfs @ 12.65 hrs, Volume= = 11.557 af

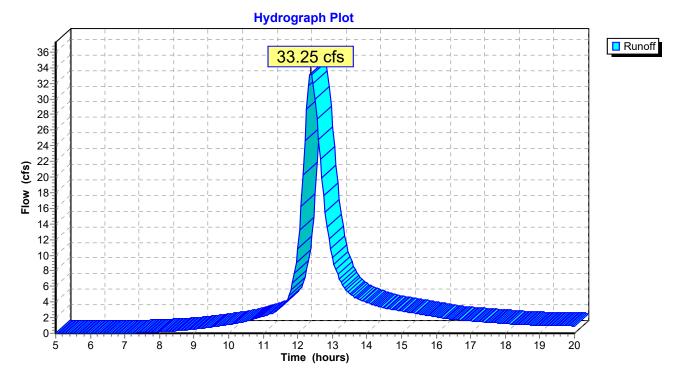
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

35.510 79 Woods, Fair, HSG D Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	_	Area	(ac) C	N Des	cription		
		35.	510 7	79 Woo	ods, Fair, H	ISG D	
			0		,		Description
13.4 100 0.0800 0.1 Sheet Flow,		13.4	100	0.0800	0.1		Sheet Flow,
34.3 2,300 0.0500 1.1 Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps		34.3	2,300	0.0500	1.1		Shallow Concentrated Flow,

47.7 2,400 Total

Subcatchment EX-3: EX-3

Subcatchment EX-4: EX-4

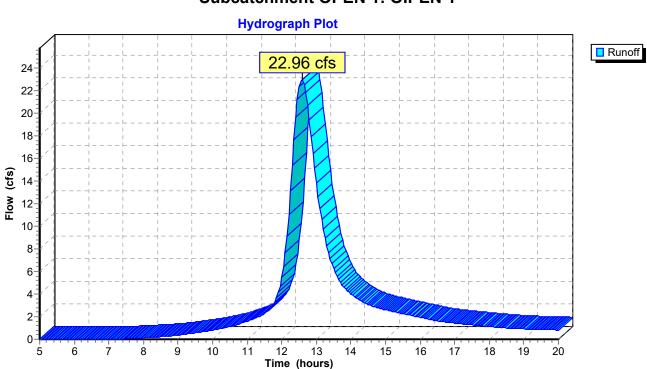

Runoff =	33.25 cfs @	12.38 hrs, Volume=	3.758 af
----------	-------------	--------------------	----------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	Area	(ac) C	N Des	cription		
	11.	470 7	79 Woo	ods, Fair, H	ISG D	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	21.4	100	0.0250	0.1		Sheet Flow,
	6.0	400	0.0500	1.1		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
-	27.4	500	Total			

27.4 500 Total

Subcatchment EX-4: EX-4


Subcatchment OPEN 1: OIPEN 1

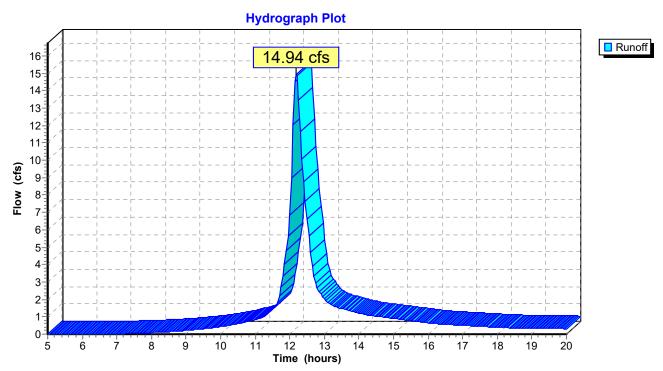
Runoff = 22.96 cfs @ 12.59 hrs, Volume= 3.189 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

	A	rea (sf)) CN	Description		
	4	26,190) 79	Woods, Fai	r, HSG D	
	Tc (min)	Length (feet)		,	Capacity (cfs)	Description
_	16.2	100	0 0.0500	0.1		Sheet Flow,
	26.6	1,380	0.0300	0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	40.0	4 400	0 T I I			

42.8 1,480 Total

Subcatchment OPEN 1: OIPEN 1


Subcatchment OPEN 2: OPEN 2

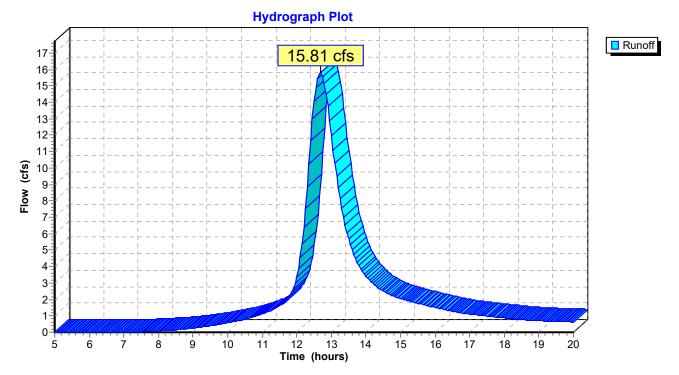
Runoff 14.94 cfs @ 12.19 hrs, Volume= = 1.275 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

_	A	rea (sf)	CN	Description					
	1	68,705	79 Woods, Fair, HSG D						
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
_	13.4	100	0.0800	0.1		Sheet Flow, Woods: Light underbrush n= 0	.400	P2= 2.70"	

Subcatchment OPEN 2: OPEN 2

Subcatchment OPEN 3: OPEN 3

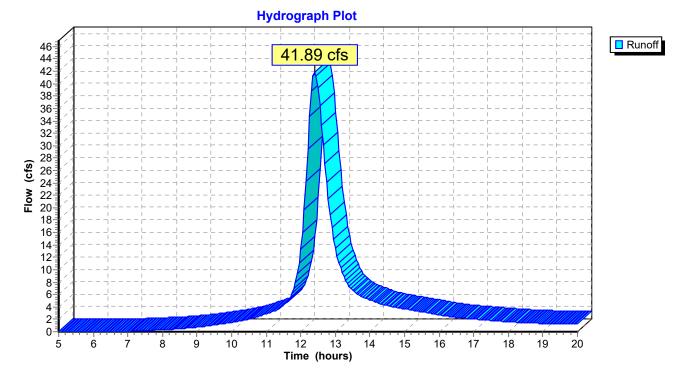

Runoff = 15.81 cfs @ 12.68 hrs, Volume= 2.388 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	sf) CN	Description		
3	19,952	52 79	Woods/gras	ss comb., G	Good, HSG D
Tc (min)	Length (feet)	U 1		Capacity (cfs)	Description
26.2	100	100 0.0150	0.1		Sheet Flow,
24.1	885	885 0.0150	0.6		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	005	005 T-1-1			

50.3 985 Total

Subcatchment OPEN 3: OPEN 3


Subcatchment OPEN 4: OPEN 4

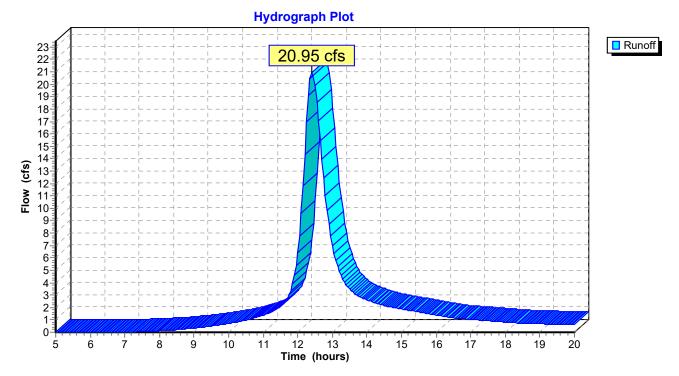
Runoff = 41.89 cfs @ 12.40 hrs, Volume= 4.883 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

	A	rea (sf)	CN	Description		
		14,560	79	Woods, Fai	,	
		18,300	98	Paved park	ing & roofs	
	632,860 80 Weighted Average				verage	
(n	Tc nin)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
1	5.1	100	0.0600	0.1		Sheet Flow,
	4.1	1,200	0.0800			Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
2	9.2	1,300	Total			

Subcatchment OPEN 4: OPEN 4

Subcatchment OPEN 5: OPEN 5

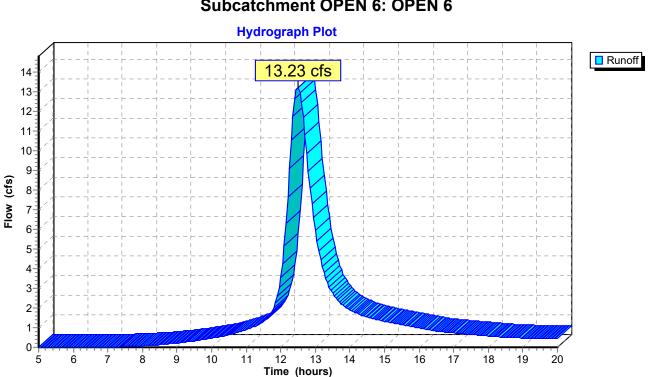

Runoff = 20.95 cfs @ 12.41 hrs, Volume= 2.454 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

	A	rea (sf)) CN	Description		
	3	26,510) 79	Woods, Fai	r, HSG D	
	Tc (min)	Length (feet)		,	Capacity (cfs)	Description
_	17.7	100	0.0400	0.1		Sheet Flow,
	12.1	630	30 0.0300) 0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
_	20.0	720				

29.8 730 Total

Subcatchment OPEN 5: OPEN 5


Subcatchment OPEN 6: OPEN 6

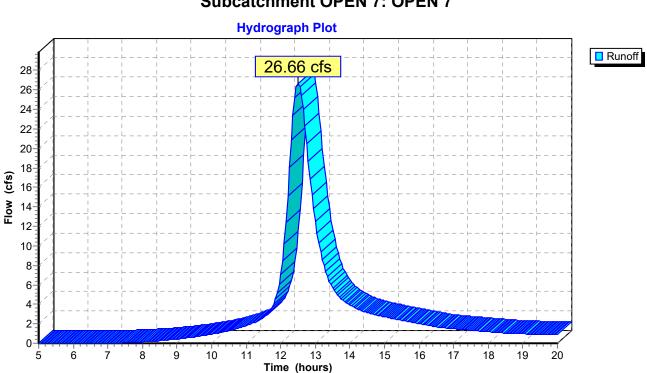
Runoff 13.23 cfs @ 12.49 hrs, Volume= 1.683 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	a (sf)	CN D	escription		
2	24,401	4,401	79 V	/oods, Fai	r, HSG D	
Tc (min)	Length (feet)	0	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
21.4	100	100	0.0250	0.1	X	Sheet Flow,
14.3	800	800	0.0350	0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
25.7	000	000	Tatal			· · · · · · · · · · · · · · · · · · ·

35.7 900 Total

Subcatchment OPEN 6: OPEN 6


Subcatchment OPEN 7: OPEN 7

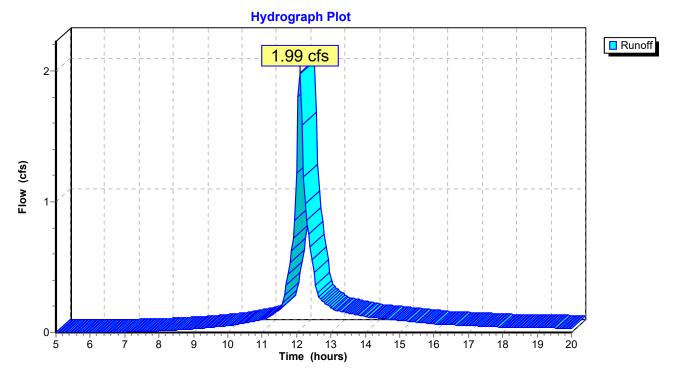
Runoff = 26.66 cfs @ 12.50 hrs, Volume= 3.431 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

A	rea (sf)	ea (sf)	CN D	escription		
4	57,482	7,482	79 V	Voods, Fai	r, HSG D	
Tc (min)	Length (feet)	0	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
18.7	100	100	0.0350	0.1		Sheet Flow,
17.8	1,000	1,000	0.0350	0.9		Woods: Light underbrush n= 0.400 P2= 2.70" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
<u> </u>	4 4 9 9	4 4 9 9	T ()			-

36.5 1,100 Total

Subcatchment OPEN 7: OPEN 7

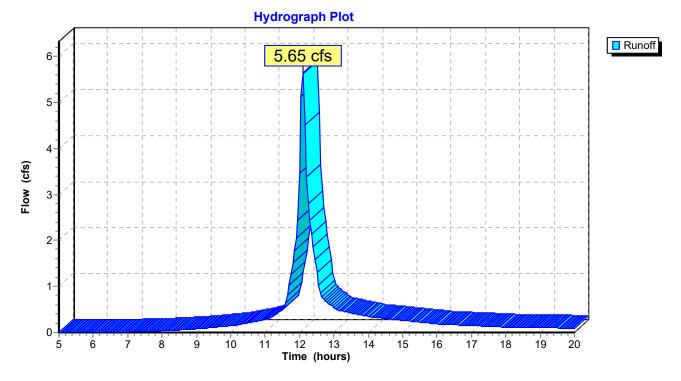

Subcatchment POND 1: POND 1

Runoff = 1.99 cfs @ 12.09 hrs, Volume= 0.136 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Area (sf)	CN Description	
17,554	80 >75% Grass cover, Good, HSG D	
Tc Length _(min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, TR 55 MIN	

Subcatchment POND 1: POND 1

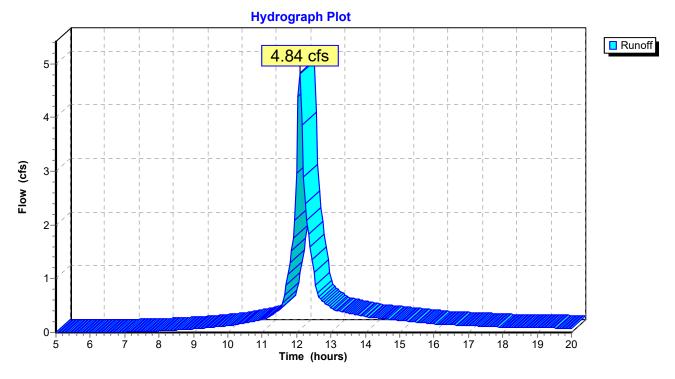

Subcatchment POND 2: POND 2

Runoff = 5.65 cfs @ 12.09 hrs, Volume= 0.388 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Area (sf)	CN Description	
49,954	80 >75% Grass cover, Good, HSG D	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, TI	R55 MIN

Subcatchment POND 2: POND 2

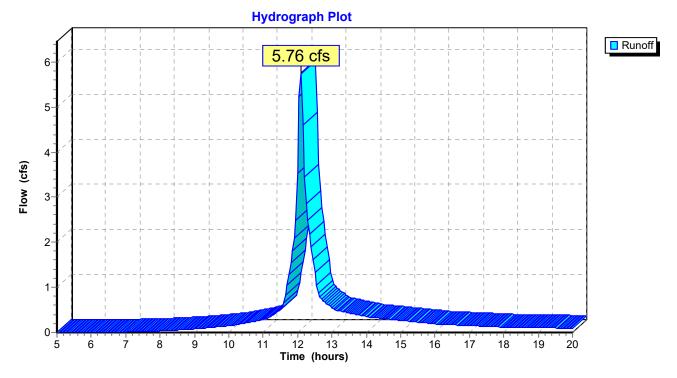

Subcatchment POND 3: POND 3

Runoff = 4.84 cfs @ 12.09 hrs, Volume= 0.332 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Area (sf)	CN Description	
42,753	80 >75% Grass cover, Good, HSG D	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, TR55 MIN	

Subcatchment POND 3: POND 3


Subcatchment POND 5: POND 5

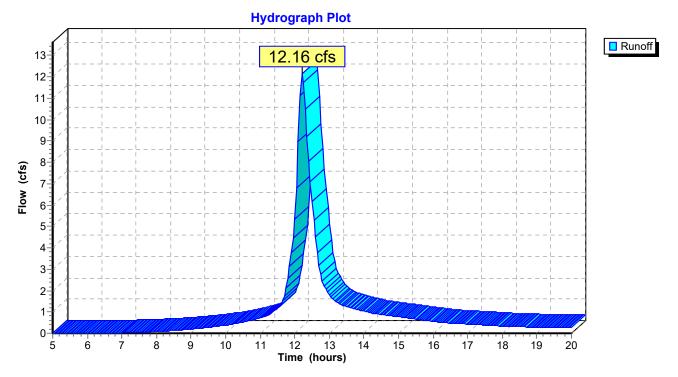
Runoff = 5.76 cfs @ 12.09 hrs, Volume= 0.396 af

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

Area (sf)	CN Description		
50,948	80 >75% Gras	s cover, Good	I, HSG D
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity D (cfs)	Description
6.0		D	Direct Entry, TR55 MIN

Subcatchment POND 5: POND 5

Subcatchment POND 6: POND 6


Runoff 12.16 cfs @ 12.21 hrs, Volume= 1.090 af =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs TYPEII~2 Rainfall=6.60"

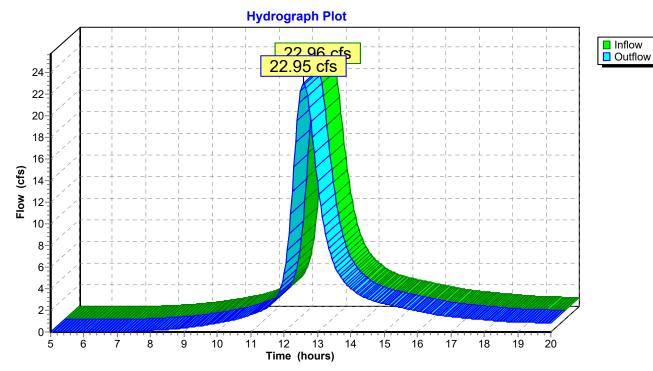
_	А	rea (sf)	f) CN	Description		
-	140,626 80 >75% Grass c				s cover, Go	ood, HSG D
	Tc (min)	Length (feet)	/ I	,	Capacity (cfs)	Description
-	14.2	100	00 0.0250	0.1	· · · ·	Sheet Flow,
	1.2	180	80 0.0300	2.6		Grass: Dense n= 0.240 P2= 2.70" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
-	15 /	200	00 Total			

15.4 280 Total

Subcatchment POND 6: POND 6

Reach CULVERT 1: CULVERT 1

[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified


Inflow	=	22.96 cfs @	12.59 hrs, Volume=	3
Outflow	=	22.95 cfs @	12.59 hrs, Volume=	3

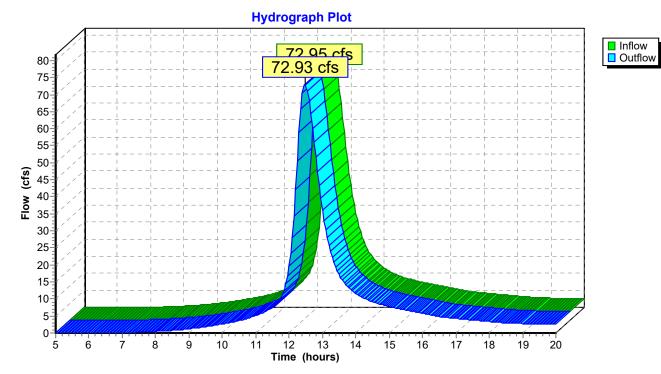
3.189 af 3.189 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.0 fps, Min. Travel Time= 0.1 min Avg. Velocity = 4.1 fps, Avg. Travel Time= 0.2 min

Peak Depth= 1.09' Capacity at bank full= 108.99 cfs 42.0" Diameter Pipe n= 0.012 Length= 42.0' Slope= 0.0100 '/'

Reach CULVERT 1: CULVERT 1

Reach CULVERT 2: CULVERT 2


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

Inflow	=	72.95 cfs @ 1	I2.48 hrs, Volume=	9.703 af
Outflow	=	72.93 cfs @ 1	I2.48 hrs, Volume=	9.703 af, Atten= 0%, Lag= 0.1 min

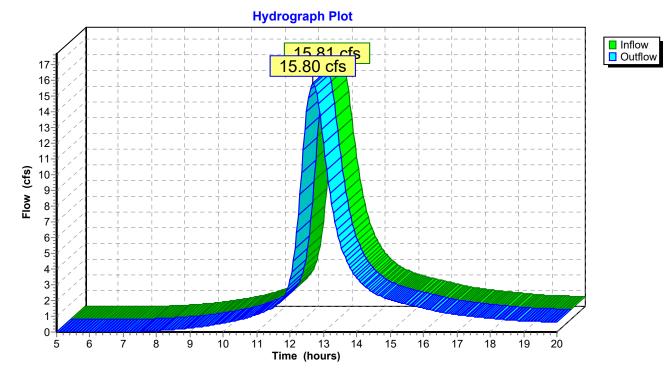
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 12.1 fps, Min. Travel Time= 0.1 min Avg. Velocity = 5.6 fps, Avg. Travel Time= 0.1 min

Peak Depth= 2.09' Capacity at bank full= 108.99 cfs 42.0" Diameter Pipe n= 0.012 Length= 46.0' Slope= 0.0100 '/'

Reach CULVERT 2: CULVERT 2

Reach CULVERT 3: CULVERT 3

[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified


Inflow	=	15.81 cfs @	12.68 hrs, Volume=	2.388
Outflow	=	15.80 cfs @	12.68 hrs, Volume=	2.388

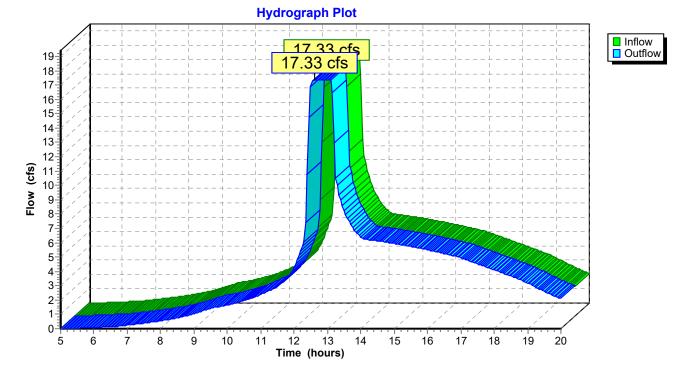
2.388 af 2.388 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 8.1 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.7 fps, Avg. Travel Time= 0.2 min

Peak Depth= 0.90' Capacity at bank full= 108.99 cfs 42.0" Diameter Pipe n= 0.012 Length= 42.0' Slope= 0.0100 '/'

Reach CULVERT 3: CULVERT 3

Reach DMH-5 TO OUTLET: DMH-5 TO OUTLET


[52] Hint: Inlet conditions not evaluated[65] Warning: Inlet elevation not specified[88] Warning: Qout>Qin may require Finer Routing>1

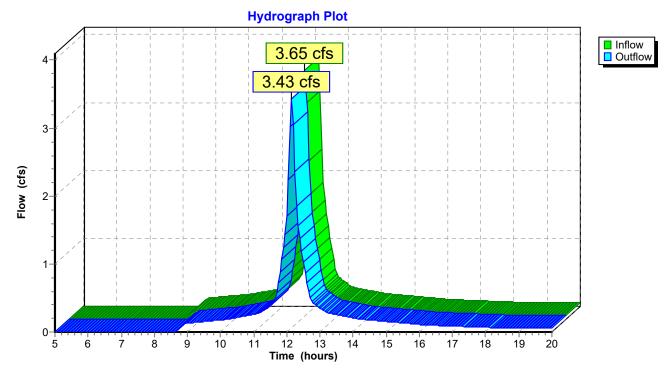
Inflow	=	17.33 cfs @	12.55 hrs, Volume=	4.793 af
Outflow	=	17.33 cfs @	12.60 hrs, Volume=	4.789 af, Atten= 0%, Lag= 3.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.3 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.9 fps, Avg. Travel Time= 0.8 min

Peak Depth= 1.64' Capacity at bank full= 17.28 cfs 24.0" Diameter Pipe n= 0.012 Length= 193.0' Slope= 0.0050 '/'

Reach DMH-5 TO OUTLET: DMH-5 TO OUTLET

Reach DRY SWALE 1: DRY SWALE 1


[65] Warning: Inlet elevation not specified

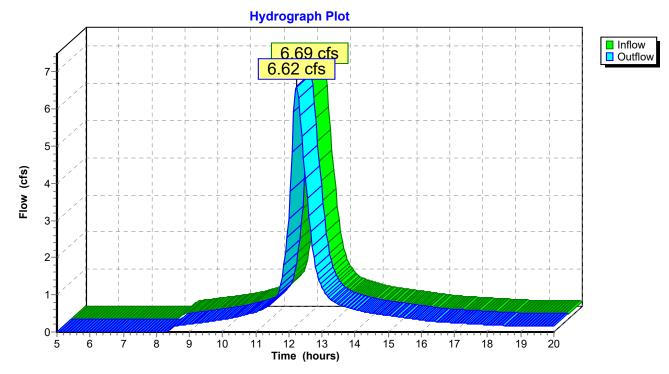
Inflow	=	3.65 cfs @	12.10 hrs, Volume=	0.262 af
Outflow	=	3.43 cfs @	12.15 hrs, Volume=	0.262 af, Atten= 6%, Lag= 2.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.3 fps, Min. Travel Time= 1.6 min Avg. Velocity = 0.4 fps, Avg. Travel Time= 4.9 min

Peak Depth= 0.31' Capacity at bank full= 59.21 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 125.0' Slope= 0.0050 '/' Side Slope Z-value= 3.0 '/'

Reach DRY SWALE 1: DRY SWALE 1

Reach DRY SWALE 2: DRY SWALE 2


[65] Warning: Inlet elevation not specified

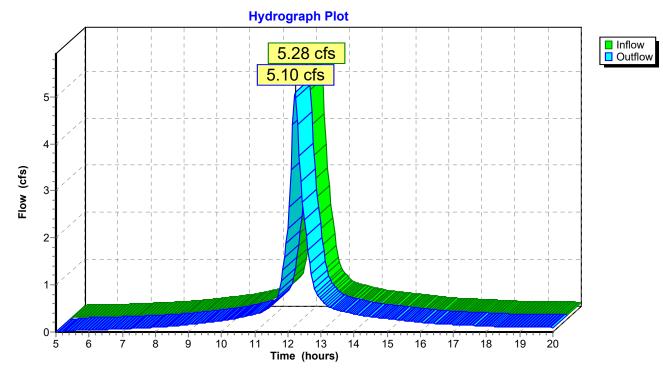
Inflow	=	6.69 cfs @ 12.19	hrs, Volume=	0.676 af
Outflow	=	6.62 cfs @ 12.23	hrs, Volume=	0.675 af, Atten= 1%, Lag= 2.7 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.6 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.6 fps, Avg. Travel Time= 3.9 min

Peak Depth= 0.45' Capacity at bank full= 58.97 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 140.0' Slope= 0.0050 '/' Side Slope Z-value= 3.0 '/'

Reach DRY SWALE 2: DRY SWALE 2

Reach DRY SWALE 3: DRY SWALE 3


[65] Warning: Inlet elevation not specified

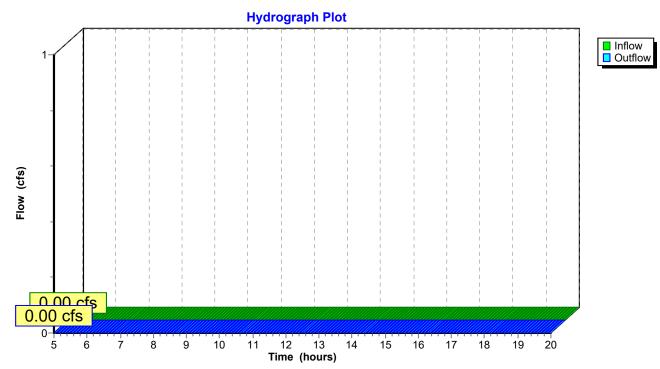
Inflow	=	5.28 cfs @ 1	12.15 hrs, Volume=	0.463 af
Outflow	=	5.10 cfs @ 1	12.22 hrs, Volume=	0.462 af, Atten= 3%, Lag= 4.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.4 fps, Min. Travel Time= 2.5 min Avg. Velocity = 0.5 fps, Avg. Travel Time= 7.9 min

Peak Depth= 0.38' Capacity at bank full= 58.97 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 220.0' Slope= 0.0050 '/' Side Slope Z-value= 3.0 '/'

Reach DRY SWALE 3: DRY SWALE 3

Reach DRY SWALE 4: (new node)

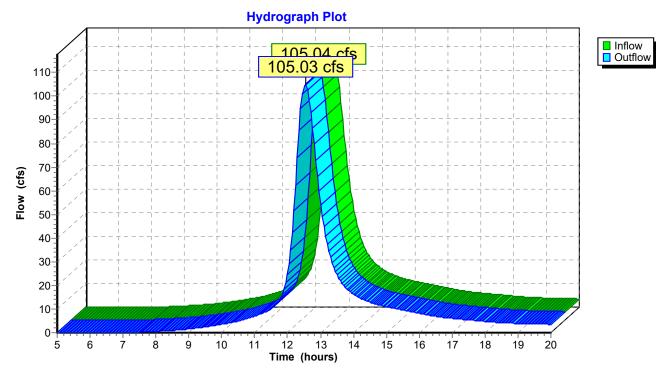

[65] Warning: Inlet elevation not specified

Inflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 0.0 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.0 fps, Avg. Travel Time= 0.0 min

Peak Depth= 0.00' Capacity at bank full= 58.97 cfs 8.00' x 1.50' deep channel, n= 0.035 Length= 140.0' Slope= 0.0050 '/' Side Slope Z-value= 3.0 '/'

Reach DRY SWALE 4: (new node)


Reach EX ANALYSIS A: EX ANALYSIS A

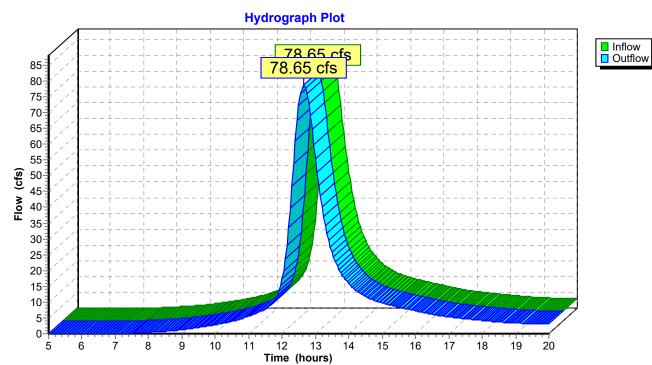
[65] Warning: Inlet elevation not specified[91] Warning: Storage range exceeded by 0.33'[55] Hint: Peak inflow is 146% of Manning's capacity

Inflow	=	105.04 cfs @	12.53 hrs,	Volume=	13.677 af
Outflow	=	105.03 cfs @	12.53 hrs,	Volume=	13.677 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.9 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.4 fps, Avg. Travel Time= 0.0 min

Peak Depth= 1.83' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach EX ANALYSIS A: EX ANALYSIS A


Reach EX-ANALYSIS B: EX ANALYSIS B

[65] Warning: Inlet elevation not specified[91] Warning: Storage range exceeded by 0.07'[55] Hint: Peak inflow is 109% of Manning's capacity

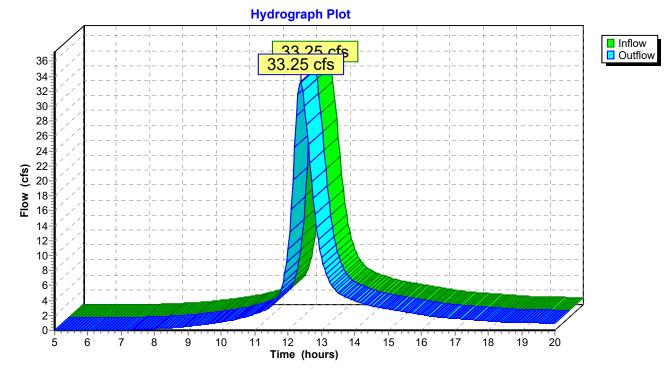
Inflow	=	78.65 cfs @	12.65 hrs,	Volume=	11.557 af
Outflow	=	78.65 cfs @	12.65 hrs,	Volume=	11.557 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.2 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.2 fps, Avg. Travel Time= 0.0 min

Peak Depth= 1.57' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach EX-ANALYSIS B: EX ANALYSIS B

Reach EX-ANALYSIS C: EX-ANALYSIS C


[65] Warning: Inlet elevation not specified

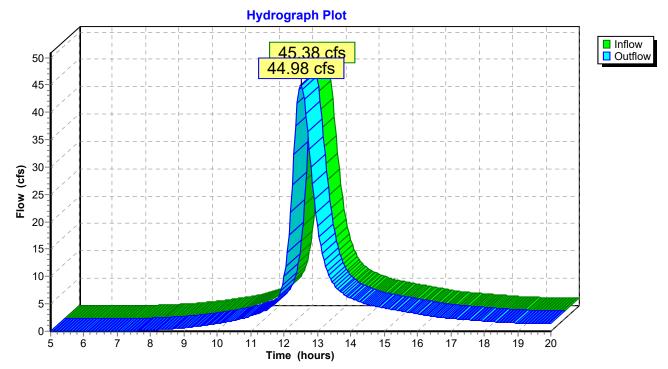
Inflow	=	33.25 cfs @ 12.38 hrs, Volume=	3.758 af
Outflow	=	33.25 cfs @ 12.38 hrs, Volume=	3.758 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.2 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.0 fps, Avg. Travel Time= 0.1 min

Peak Depth= 1.04' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach EX-ANALYSIS C: EX-ANALYSIS C

Reach EX-WETLAND CHANNEL: EX WETLAND CHANNEL 1 TO 2


[65] Warning: Inlet elevation not specified

Inflow	=	45.38 cfs @ 12.42 hi	rs, Volume=	5.377 af
Outflow	=	44.98 cfs @ 12.50 hi	rs, Volume=	5.358 af, Atten= 1%, Lag= 4.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.3 fps, Min. Travel Time= 2.8 min Avg. Velocity = 3.1 fps, Avg. Travel Time= 6.5 min

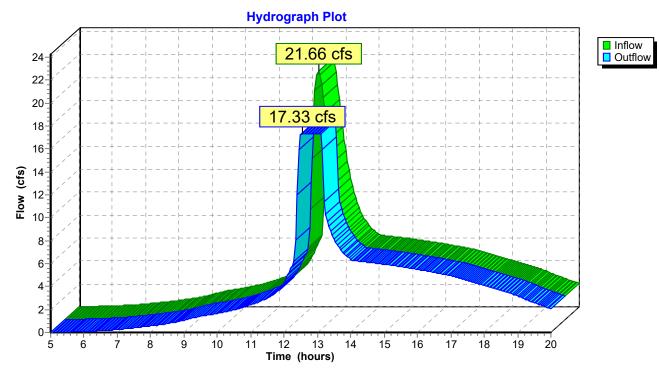
Peak Depth= 1.28' Capacity at bank full= 66.95 cfs 8.00' x 1.54' deep Parabolic Channel, n= 0.035 Length= 1,200.0' Slope= 0.0400 '/'

Reach EX-WETLAND CHANNEL: EX WETLAND CHANNEL 1 TO 2

Reach OCS-3 TO DMH-5: OCS3 TO DMH5

[52] Hint: Inlet conditions not evaluated

[65] Warning: Inlet elevation not specified


[55] Hint: Peak inflow is 125% of Manning's capacity

[76] Warning: Detained 0.08 af (Pond w/culvert advised)

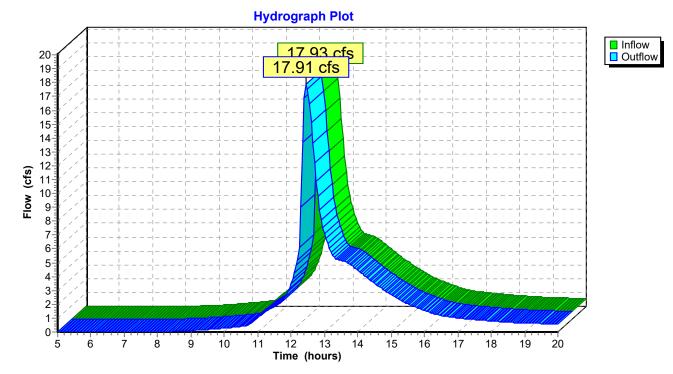
Inflow = 21.66 cfs @ 12.60 hrs, Volume= 4.799 af Outflow = 17.33 cfs @ 12.55 hrs, Volume= 4.793 af, Atten= 20%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.3 fps, Min. Travel Time= 0.7 min Avg. Velocity = 3.8 fps, Avg. Travel Time= 1.2 min

Peak Depth= 2.00' Capacity at bank full= 17.33 cfs 24.0" Diameter Pipe n= 0.012 Length= 274.0' Slope= 0.0050 '/'

Reach OCS-3 TO DMH-5: OCS3 TO DMH5

Reach OCS-4 TO OUTLET: OCS-4 TO OUTLET


[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

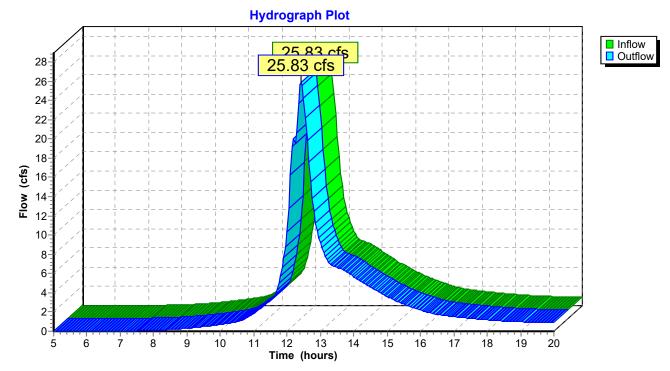
Inflow	=	17.93 cfs @	12.46 hrs, Volume=	2.260 af
Outflow	=	17.91 cfs @	12.46 hrs, Volume=	2.260 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 13.3 fps, Min. Travel Time= 0.1 min Avg. Velocity = 5.7 fps, Avg. Travel Time= 0.2 min

Peak Depth= 0.89' Capacity at bank full= 44.02 cfs 24.0" Diameter Pipe n= 0.012 Length= 62.0' Slope= 0.0323 '/'

Reach OCS-4 TO OUTLET: OCS-4 TO OUTLET

Reach P-ANALYISIS C: P-ANALYSIS C

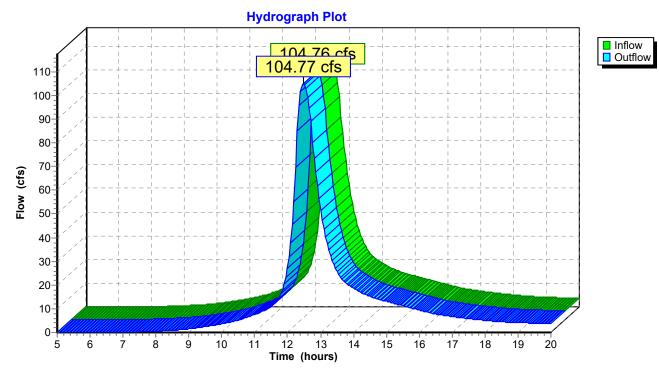

[65] Warning: Inlet elevation not specified

Inflow	=	25.83 cfs @ 12.42 hrs, Volume=	3.535 af
Outflow	=	25.83 cfs @ 12.42 hrs, Volume=	3.535 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.6 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.9 fps, Avg. Travel Time= 0.1 min

Peak Depth= 0.93' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach P-ANALYISIS C: P-ANALYSIS C


Reach P-ANALYSIS A: P-ANALYSIS A

[65] Warning: Inlet elevation not specified
[91] Warning: Storage range exceeded by 0.33'
[55] Hint: Peak inflow is 146% of Manning's capacity
[88] Warning: Qout>Qin may require Finer Routing>1

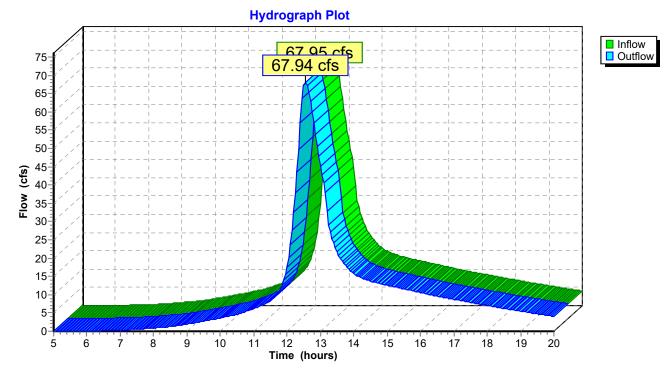
Inflow = 104.76 cfs @ 12.48 hrs, Volume= 14.348 af Outflow = 104.77 cfs @ 12.48 hrs, Volume= 14.348 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 9.9 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.4 fps, Avg. Travel Time= 0.0 min

Peak Depth= 1.83' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach P-ANALYSIS A: P-ANALYSIS A

Reach P-ANALYSIS B: P-ANALYSIS B


[65] Warning: Inlet elevation not specified

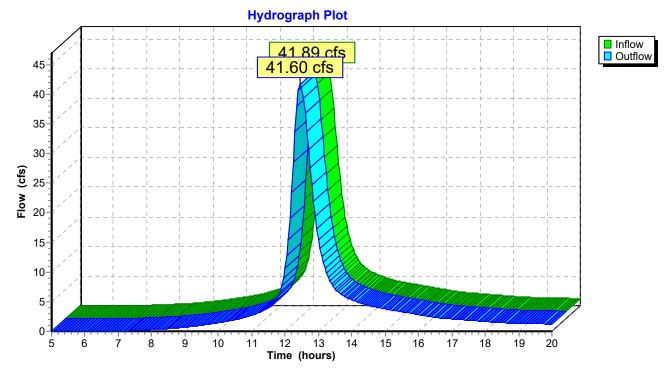
Inflow	=	67.95 cfs @	12.55 hrs, Volume=	12.169 af
Outflow	=	67.94 cfs @	12.55 hrs, Volume=	12.169 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 8.8 fps, Min. Travel Time= 0.0 min Avg. Velocity = 4.2 fps, Avg. Travel Time= 0.0 min

Peak Depth= 1.46' Capacity at bank full= 71.84 cfs 8.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 10.0' Slope= 0.0500 '/'

Reach P-ANALYSIS B: P-ANALYSIS B

Reach P-WETLAND CHANNEL: p WETLAND CHANNEL 1 TO 2

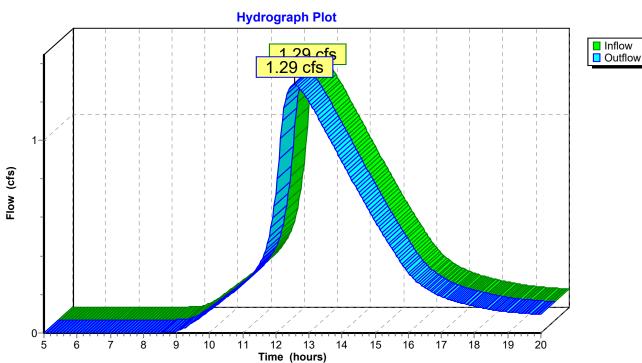

[65] Warning: Inlet elevation not specified

Inflow	=	41.89 cfs @	12.40 hrs, Volume=	4.883 af
Outflow	=	41.60 cfs @	12.46 hrs, Volume=	4.871 af, Atten= 1%, Lag= 3.5 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 7.7 fps, Min. Travel Time= 2.0 min Avg. Velocity = 3.2 fps, Avg. Travel Time= 4.7 min

Peak Depth= 1.17' Capacity at bank full= 74.86 cfs 8.00' x 1.54' deep Parabolic Channel, n= 0.035 Length= 900.0' Slope= 0.0500 '/'

Reach P-WETLAND CHANNEL: p WETLAND CHANNEL 1 TO 2


Reach POND 1 OUTLET: POND 1 OUTLET

[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

Inflow	=	1.29 cfs @	12.54 hrs,	Volume=	0.385 af
Outflow	=	1.29 cfs @	12.56 hrs,	Volume=	0.385 af, Atten= 0%, Lag= 1.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.4 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.0 fps, Avg. Travel Time= 0.9 min

Peak Depth= 0.48' Capacity at bank full= 2.73 cfs 12.0" Diameter Pipe n= 0.012 Length= 112.0' Slope= 0.0050 '/'

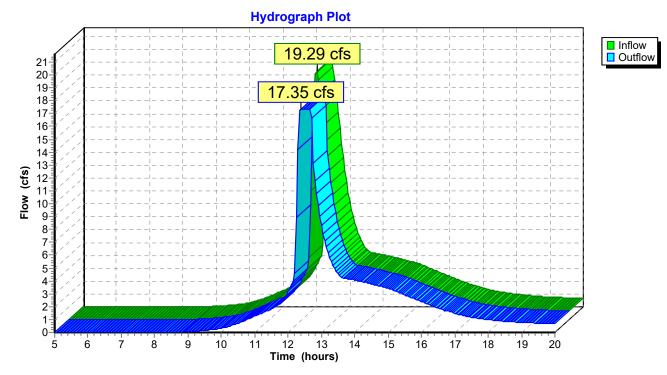
Reach POND 1 OUTLET: POND 1 OUTLET

Reach POND 2 OUTLET: POND 2 OUTLET

[52] Hint: Inlet conditions not evaluated

[65] Warning: Inlet elevation not specified

[55] Hint: Peak inflow is 111% of Manning's capacity

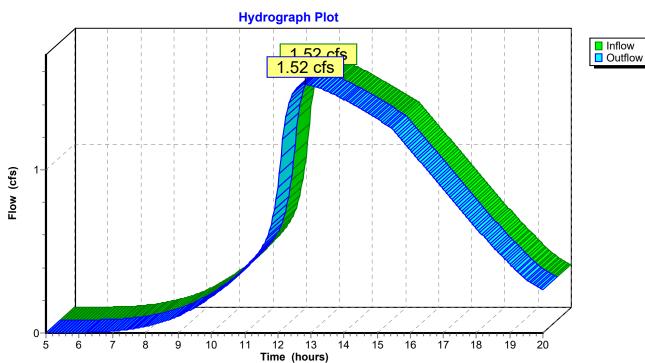

[76] Warning: Detained 0.02 af (Pond w/culvert advised)

Inflow = 19.29 cfs @ 12.43 hrs, Volume= 2.578 af Outflow = 17.35 cfs @ 12.40 hrs, Volume= 2.577 af, Atten= 10%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 6.3 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.0 fps, Avg. Travel Time= 0.6 min

Peak Depth= 2.00' Capacity at bank full= 17.33 cfs 24.0" Diameter Pipe n= 0.012 Length= 100.0' Slope= 0.0050 '/'

Reach POND 2 OUTLET: POND 2 OUTLET


Reach POND 3 OUTLET: POND 3 OUTLET

[52] Hint: Inlet conditions not evaluated [65] Warning: Inlet elevation not specified

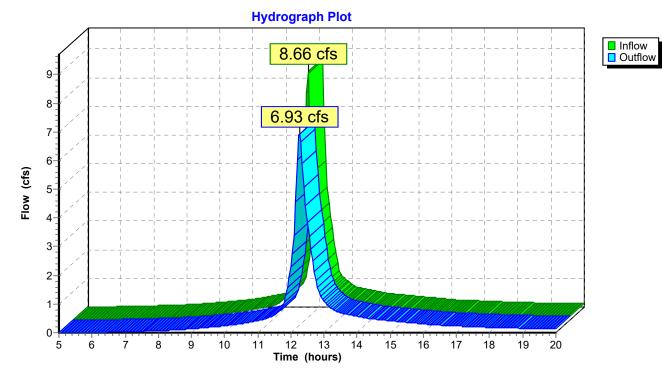
Inflow	=	1.52 cfs @	12.79 hrs, Volume=	0.761 af
Outflow	=	1.52 cfs @	12.82 hrs, Volume=	0.760 af, Atten= 0%, Lag= 1.4 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.6 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.4 fps, Avg. Travel Time= 1.1 min

Peak Depth= 0.53' Capacity at bank full= 2.74 cfs 12.0" Diameter Pipe n= 0.012 Length= 165.0' Slope= 0.0050 '/'

Reach POND 3 OUTLET: POND 3 OUTLET

Reach SWALE: SWALE


[65] Warning: Inlet elevation not specified[91] Warning: Storage range exceeded by 0.01'[55] Hint: Peak inflow is 126% of Manning's capacity

Inflow	=	8.66 cfs @	12.09 hrs, Volume=	0.609 af
Outflow	=	6.93 cfs @	12.26 hrs, Volume=	0.603 af, Atten= 20%, Lag= 10.5 min

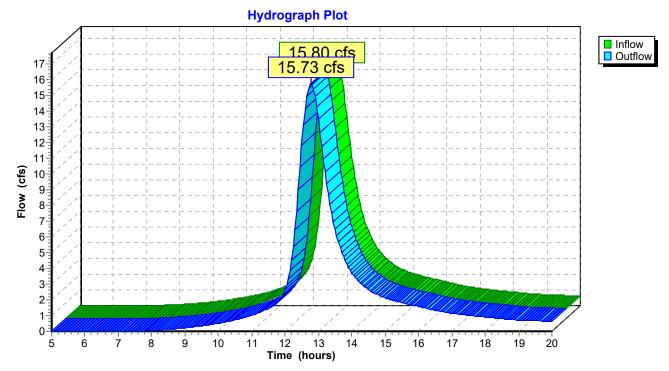
Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 2.6 fps, Min. Travel Time= 6.7 min Avg. Velocity = 1.0 fps, Avg. Travel Time= 17.9 min

Peak Depth= 1.01' Capacity at bank full= 6.90 cfs

4.00' x 1.00' deep Parabolic Channel, n= 0.040 Length= 1,050.0' Slope= 0.0100 '/'

Reach SWALE: SWALE

Reach SWALE FROM CULVERT 3 TO 2: SWALE FROM CULVERT 3 TO 2


[65] Warning: Inlet elevation not specified

Inflow	=	15.80 cfs @	12.68 hrs, Volume=	2.388 af
Outflow	=	15.73 cfs @	12.77 hrs, Volume=	2.379 af, Atten= 0%, Lag= 5.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 4.4 fps, Min. Travel Time= 3.0 min Avg. Velocity = 2.1 fps, Avg. Travel Time= 6.5 min

Peak Depth= 1.06' Capacity at bank full= 32.86 cfs 6.00' x 1.50' deep Parabolic Channel, n= 0.035 Length= 800.0' Slope= 0.0200 '/'

Reach SWALE FROM CULVERT 3 TO 2: SWALE FROM CULVERT 3 TO 2

Pond ATTENUATION 1: ATTENUATION POND 1

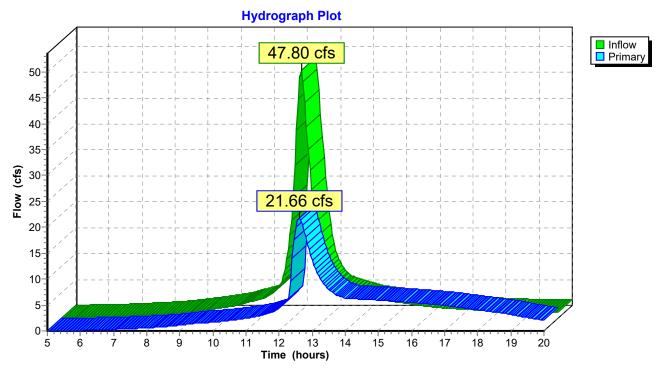
Inflow	=	47.80 cfs @	12.24 hrs, Volume=	4.887 af
Outflow	=	21.66 cfs @	12.60 hrs, Volume=	4.799 af, Atten= 55%, Lag= 21.4 min
Primary	=	21.66 cfs @	12.60 hrs, Volume=	4.799 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 378.69' Storage= 77,216 cf

Plug-Flow detention time= 91.5 min calculated for 4.799 af (98% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
372.33	5,500	0	0
374.00	7,295	10,684	10,684
376.00	11,800	19,095	29,779
378.00	17,108	28,908	58,687
380.00	36,500	53,608	112,295


Primary OutFlow (Free Discharge)

-1=Orifice/Grate

-2=Orifice/Grate

#	Routing	Invert	Outlet Devices
1	Primary	372.33'	10.0" Horiz. Orifice/Grate Limited to weir flow C= 0.600
2	Primary	378.00'	2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

Pond ATTENUATION 1: ATTENUATION POND 1

Pond ATTENUATION BASIN 1: ATTENUATION BASIN 1

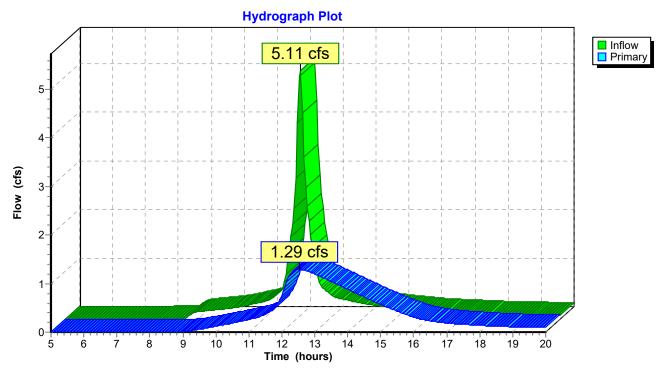
Inflow	=	5.11 cfs @	12.13 hrs, Volume=	0.398 af
Outflow	=	1.29 cfs @	12.54 hrs, Volume=	0.385 af, Atten= 75%, Lag= 24.8 min
Primary	=	1.29 cfs @	12.54 hrs, Volume=	0.385 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 349.10' Storage= 6,619 cf

Plug-Flow detention time= 70.6 min calculated for 0.384 af (96% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
347.00	2,800	0	0
350.00	3,500	9,450	9,450
352.00	5,600	9,100	18,550


Primary OutFlow (Free Discharge)

-1=Orifice/Grate -2=Orifice/Grate

- # Routing Invert Outlet Devices
- 1 Primary 347.00' **6.0" Vert. Orifice/Grate** C= 0.600

2 Primary 350.00' 2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

Pond ATTENUATION BASIN 1: ATTENUATION BASIN 1

Pond ATTENUATION BASIN 2: ATTENUATION BASIN 2

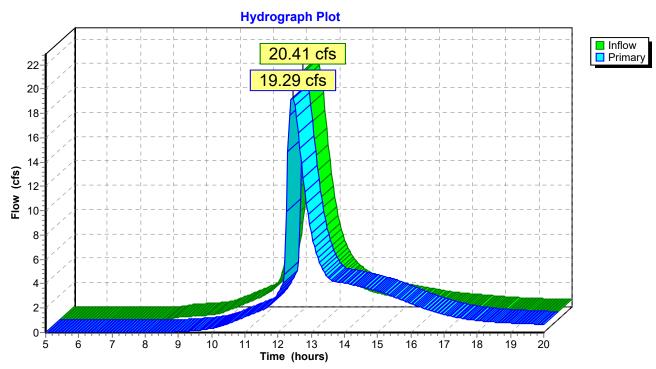
Inflow	=	20.41 cfs @	12.33 hrs,	Volume=	2.627 af
Outflow	=	19.29 cfs @	12.43 hrs,	Volume=	2.578 af, Atten= 5%, Lag= 6.1 min
Primary	=	19.29 cfs @	12.43 hrs,	Volume=	2.578 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 361.68' Storage= 22,082 cf

Plug-Flow detention time= 41.3 min calculated for 2.578 af (98% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
358.00	3,879	0	0
360.00	5,800	9,679	9,679
362.00	9,000	14,800	24,479
364.00	23,500	32,500	56,979


Primary OutFlow (Free Discharge)

-1=Orifice/Grate

-2=Orifice/Grate

-3=Broad-Crested Rectangular Weir

 #	Routing	Invert	Outlet Devices
1	Primary	358.00'	10.0" Vert. Orifice/Grate C= 0.600
2	Primary	361.00'	2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600
3	Primary	362.50'	5.0' long x 4.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.
			Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76

Pond ATTENUATION BASIN 2: ATTENUATION BASIN 2

Pond ATTENUATION BASIN 6: ATTENUATION BASIN 6

Inflow	=	22.16 cfs @	12.26 hrs, Volume=	2.290 af
Outflow	=	17.93 cfs @	12.46 hrs, Volume=	2.260 af, Atten= 19%, Lag= 11.8 min
Primary	=	17.93 cfs @	12.46 hrs, Volume=	2.260 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 417.54' Storage= 23,126 cf Plug-Flow detention time= 33.7 min calculated for 2.260 af (99% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
412.00	1,875	0	0
416.00	4,500	12,750	12,750
418.00	9,000	13,500	26,250


Primary OutFlow (Free Discharge)

-1=Orifice/Grate

-2=Orifice/Grate

-3=Broad-Crested Rectangular Weir

#	Routing	Invert	Outlet Devices
1	Primary	412.00'	10.0" Vert. Orifice/Grate C= 0.600
2	Primary	416.50'	2.00' x 2.00' Vert. Orifice/Grate C= 0.600
3	Primary	417.00'	5.0' long x 4.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.
			Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.67 2.65 2.66 2.66 2.68 2.72 2.73 2.76

Pond ATTENUATION BASIN 6: ATTENUATION BASIN 6

Pond ATTENUATION POND 3: ATTENUATION POND 3

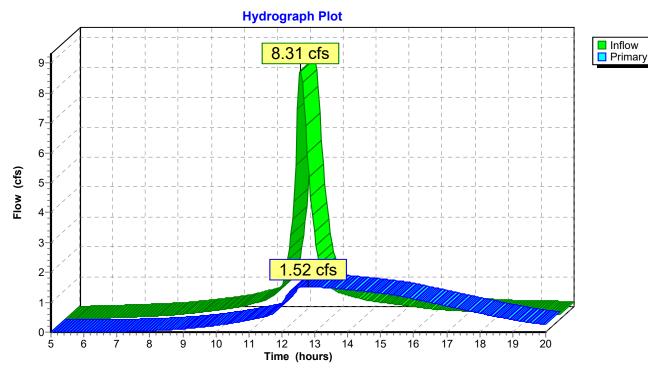
Inflow	=	8.31 cfs @	12.13 hrs, Volume=	0.794 af
Outflow	=	1.52 cfs @	12.79 hrs, Volume=	0.761 af, Atten= 82%, Lag= 39.8 min
Primary	=	1.52 cfs @	12.79 hrs, Volume=	0.761 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 370.83' Storage= 15,425 cf

Plug-Flow detention time= 121.5 min calculated for 0.758 af (95% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
368.00	3,500	0	0
370.00	5,500	9,000	9,000
372.00	10,000	15,500	24,500


Primary OutFlow (Free Discharge)

-1=Orifice/Grate -2=Orifice/Grate

- # Routing Invert Outlet Devices
- 1 Primary 368.00' 6.0" Vert. Orifice/Grate C= 0.600

2 Primary 371.00' 2.00' x 2.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

Pond ATTENUATION POND 3: ATTENUATION POND 3

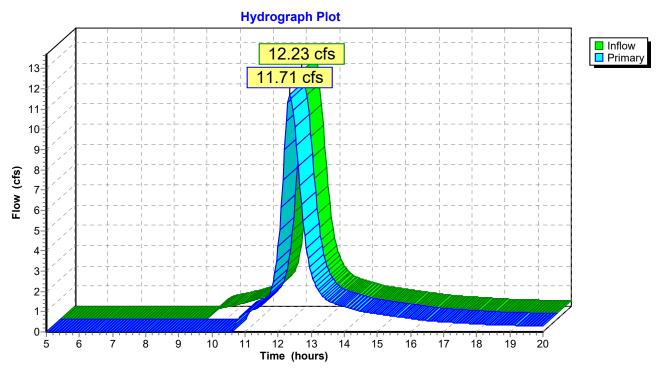
Pond BIO BASIN 2: BIO BASIN 2

[91] Warning: Storage range exceeded by 0.44' [80] Warning: Exceeded Pond PLUNGE 5 by 0.22' @ 19.95 hrs (2.01 cfs)

Inflow	=	12.23 cfs @	12.29 hrs, Volu	ume= 1.2	258 af
Outflow	=	11.71 cfs @	12.36 hrs, Volu	ume= 1.2	200 af, Atten= 4%, Lag= 4.0 min
Primary	=	11.71 cfs @	12.36 hrs, Volu	ume= 1.2	200 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 418.44' Storage= 5,463 cf Plug-Flow detention time= 29.2 min calculated for 1.196 af (95% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
417.25	4,200	0	0
418.00	5,000	3,450	3,450

Primary OutFlow (Free Discharge)

-1=Broad-Crested Rectangular Weir

#	Routing	Invert	Outlet Devices
1	Primary	417.75'	10.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond BIO BASIN 2: BIO BASIN 2

Pond BIORETENTION 1: BIORETENTION BASIN 1

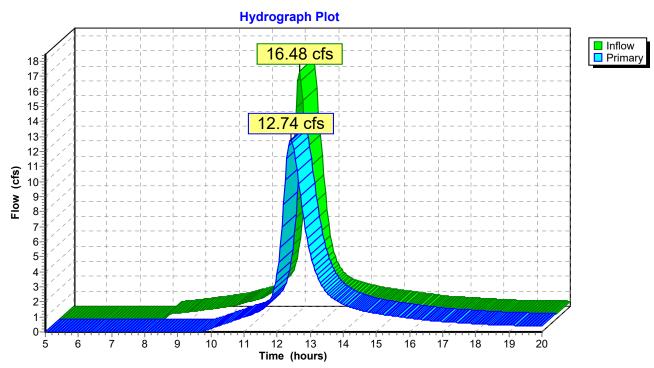
[80] Warning: Exceeded Pond PLUNGE 1 by 0.73' @ 12.75 hrs (16.62 cfs)

Inflow	=	16.48 cfs @ 12.	.25 hrs, Volume=	1.652 af
Outflow	=	12.74 cfs @ 12.	.41 hrs, Volume=	1.564 af, Atten= 23%, Lag= 9.6 min
Primary	=	12.74 cfs @ 12.	.41 hrs, Volume=	1.564 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 362.97' Storage= 15,739 cf

Plug-Flow detention time= 48.6 min calculated for 1.559 af (94% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
361.50	4,800	0	0
362.00	5,200	2,500	2,500
364.00	22,000	27,200	29,700

Primary OutFlow (Free Discharge)

-1=Broad-Crested Rectangular Weir

#	Routing	Invert	Outlet Devices
1	Primary	362.00'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.60 2.66 2.70 2.77 2.89 2.85 3.07 3.20 3.32

Pond BIORETENTION 1: BIORETENTION BASIN 1

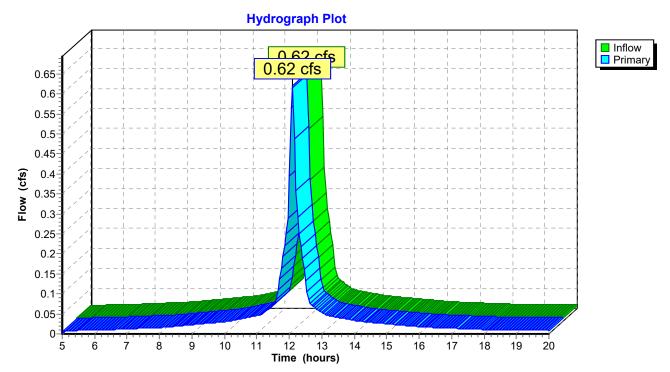
Pond CB-1: CB-1

[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

Inflow	=	0.62 cfs @	12.09 hrs, Volum	ne= 0.048 af	
Outflow	=	0.62 cfs @	12.09 hrs, Volum	ne= 0.048 af,	Atten= 0%, Lag= 0.1 min
Primary	=	0.62 cfs @	12.09 hrs, Volum	ne= 0.048 af	


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 358.22' Storage= 7 cf Plug-Flow detention time= 1.0 min calculated for 0.048 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
357.75	16	0	0
360.25	16	40	40

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	357.75'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 357.63' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-1: CB-1

Pond CB-10: CB-10

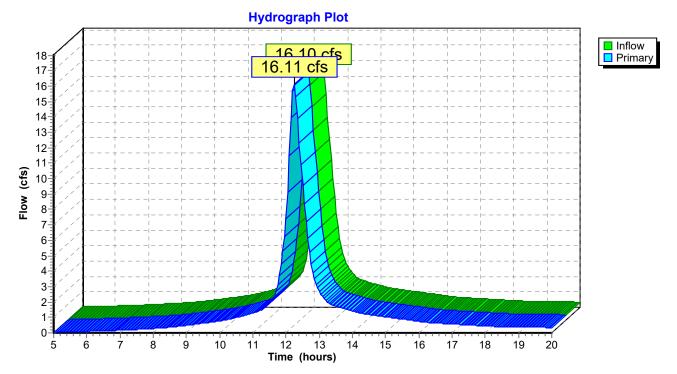
[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-9 Primary device # 1 INLET by 1.18'

Inflow	=	16.10 cfs @	12.24 hrs,	Volume=	1.633 af
Outflow	=	16.11 cfs @	12.24 hrs,	Volume=	1.633 af, Atten= 0%, Lag= 0.0 min
Primary	=	16.11 cfs @	12.24 hrs,	Volume=	1.633 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 371.81' Storage= 34 cf Plug-Flow detention time= 0.1 min calculated for 1.633 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
369.68	16	0	0
373.74	16	65	65


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

369.68' 24.0" x 181.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 364.65' S= 0.0278 '/' n= 0.012 Cc= 0.900

Pond CB-10: CB-10

Pond CB-11: CB-11

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-10 Primary device # 1 OUTLET by 2.33'

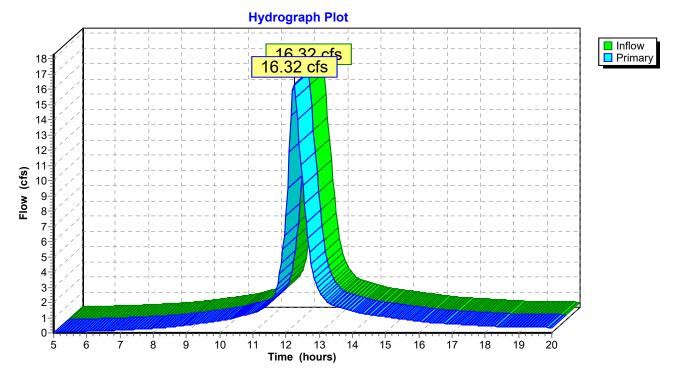
Inflow	=	16.32 cfs @	12.24 hrs,	Volume=	1.667 af
Outflow	=	16.32 cfs @	12.24 hrs,	Volume=	1.667 af, Atten= 0%, Lag= 0.0 min
Primary	=	16.32 cfs @	12.24 hrs,	Volume=	1.667 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 366.98' Storage= 37 cf

Plug-Flow detention time= 0.1 min calculated for 1.667 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
364.64	16	0	0
368.14	16	56	56


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

364.64' 24.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 364.40' S= 0.0100 '/' n= 0.012 Cc= 0.900

Pond CB-11: CB-11

Pond CB-11A: CB-11A

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-11 Primary device # 1 INLET by 2.06'

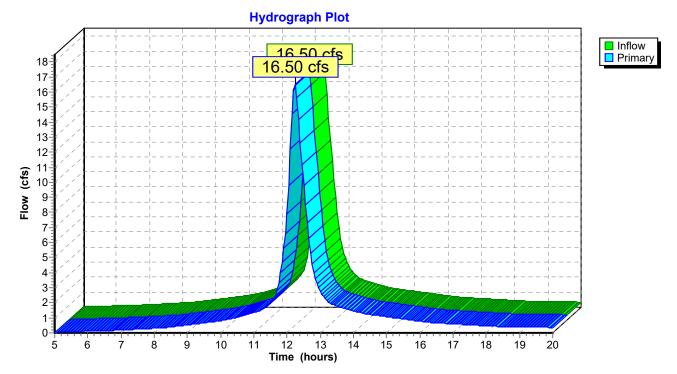
Inflow	=	16.50 cfs @	12.24 hrs,	Volume=	1.695 af
Outflow	=	16.50 cfs @	12.24 hrs,	Volume=	1.695 af, Atten= 0%, Lag= 0.0 min
Primary	=	16.50 cfs @	12.24 hrs,	Volume=	1.695 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 366.70' Storage= 37 cf

Plug-Flow detention time= 0.1 min calculated for 1.695 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
364.40	16	0	0
368.14	16	60	60


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

364.40' 24.0" x 32.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 364.08' S= 0.0100 '/' n= 0.012 Cc= 0.900

Pond CB-11A: CB-11A

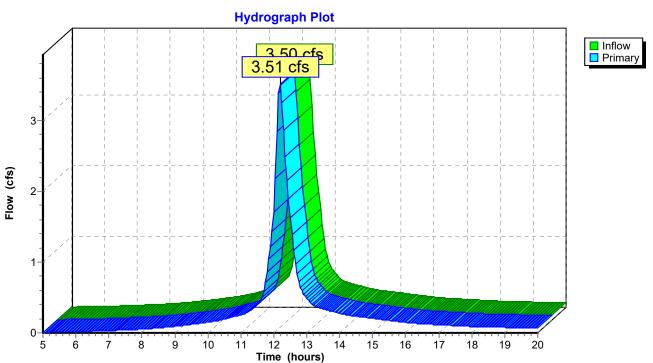
Pond CB-12: CB-12

[88] Warning: Qout>Qin may require Finer Routing>1 [80] Warning: Exceeded Pond CB-12A by 0.37' @ 12.20 hrs (2.30 cfs)

Inflow	=	3.50 cfs @	12.19 hrs, Volume	e= 0.322 af
Outflow	=	3.51 cfs @	12.19 hrs, Volume	e= 0.322 af, Atten= 0%, Lag= 0.2 min
Primary	=	3.51 cfs @	12.19 hrs, Volume	e= 0.322 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 373.36' Storage= 22 cf Plug-Flow detention time= 0.2 min calculated for 0.322 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
372.00	16	0	0
374.68	16	43	43

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

372.00' 12.0" x 136.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 370.40' S= 0.0118 '/' n= 0.012 Cc= 0.900

Pond CB-12: CB-12

Pond CB-12A: CB-12A

[82] Warning: Early inflow requires earlier time span

Inflow	=	1.85 cfs @	12.16 hrs, Volume=	0.157 af
Outflow	=	1.85 cfs @	12.16 hrs, Volume=	0.157 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.85 cfs @	12.16 hrs, Volume=	0.157 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 373.01' Storage= 14 cf

Plug-Flow detention time= 0.4 min calculated for 0.156 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
372.12	16	0	0
374.62	16	40	40

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 372.12' 1 Primary Outlet Invert= 372.00' S= 0.0050 '/' n= 0.012 Cc= 0.900

Hydrograph Plot Inflow 1 85 cfs Primary 2 1.85 cfs Flow (cfs) 0 ż 11 5 6 8 ģ 10 12 13 14 15 16 17 19 18 20 Time (hours)

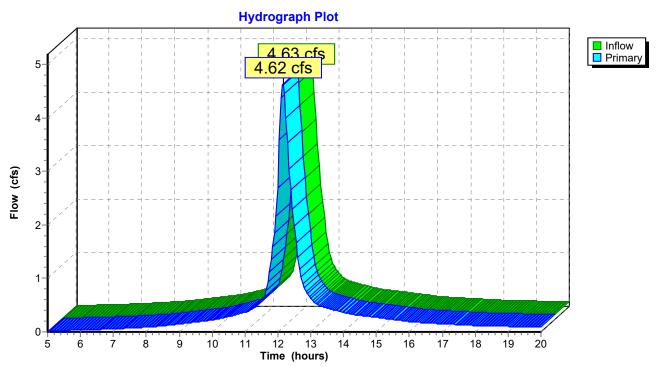
Pond CB-12A: CB-12A

Pond CB-13: CB-13

[82] Warning: Early inflow requires earlier time span
[79] Warning: Submerged Pond CB-12 Primary device # 1 INLET by 0.46'
[80] Warning: Exceeded Pond CB-13A by 1.45' @ 12.15 hrs (4.19 cfs)

Inflow	=	4.63 cfs @	12.15 hrs, V	/olume=	0.442 af
Outflow	=	4.62 cfs @	12.15 hrs, V	/olume=	0.442 af, Atten= 0%, Lag= 0.3 min
Primary	=	4.62 cfs @	12.15 hrs, V	/olume=	0.442 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 372.46' Storage= 33 cf

Plug-Flow detention time= 0.2 min calculated for 0.442 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
370.39	16	0	0
373.39	16	48	48

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	370.39'	12.0" x 131.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 368.77' S= 0.0124 '/' n= 0.012 Cc= 0.900

Pond CB-13: CB-13

Pond CB-13A: CB-13A

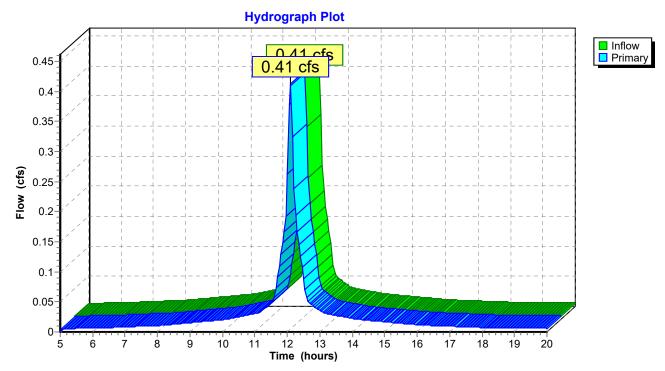
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

Inflow	=	0.41 cfs @	12.09 hrs, Volume=	0.032 af
Outflow	=	0.41 cfs @	12.09 hrs, Volume=	0.032 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.41 cfs @	12.09 hrs, Volume=	0.032 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 371.05' Storage= 5 cf

Plug-Flow detention time= 1.0 min calculated for 0.032 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
370.73	16	0	0
373.23	16	40	40

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	370.73'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 370.39' S= 0.0142 '/' n= 0.012 Cc= 0.900

Pond CB-13A: CB-13A

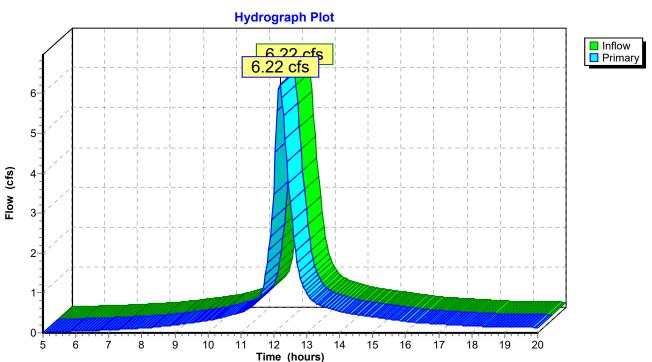
Pond CB-14: CB-14

[85] Warning: Oscillations may require Finer Routing>1 [79] Warning: Submerged Pond CB-13 Primary device # 1 OUTLET by 1.53'

Inflow	=	6.22 cfs @	12.19 hrs,	Volume=	0.640 af
Outflow	=	6.22 cfs @	12.19 hrs,	Volume=	0.640 af, Atten= 0%, Lag= 0.0 min
Primary	=	6.22 cfs @	12.19 hrs,	Volume=	0.640 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 370.30' Storage= 25 cf Plug-Flow detention time= 0.2 min calculated for 0.640 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
368.76	16	0	0
372.26	16	56	56

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

368.76' 18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 368.64' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-14: CB-14

Pond CB-14A: CB-14A

[82] Warning: Early inflow requires earlier time span

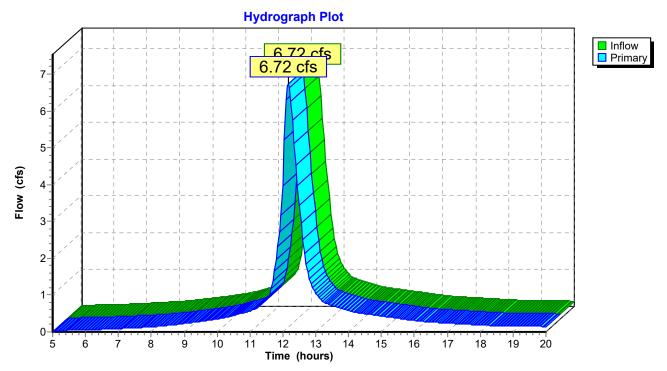
[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-14 Primary device # 1 INLET by 1.49'

Inflow	=	6.72 cfs @	12.17 hrs, Volume=	0.698 af
Outflow	=	6.72 cfs @	12.17 hrs, Volume=	0.698 af, Atten= 0%, Lag= 0.0 min
Primary	=	6.72 cfs @	12.17 hrs, Volume=	0.698 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 370.25' Storage= 26 cf


Plug-Flow detention time= 0.2 min calculated for 0.698 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
368.64	16	0	0
372.26	16	58	58

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	368.64'	18.0" x 36.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	-		Outlet Invert= 368.46' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-14A: CB-14A

Pond CB-15: CB-15

[82] Warning: Early inflow requires earlier time span

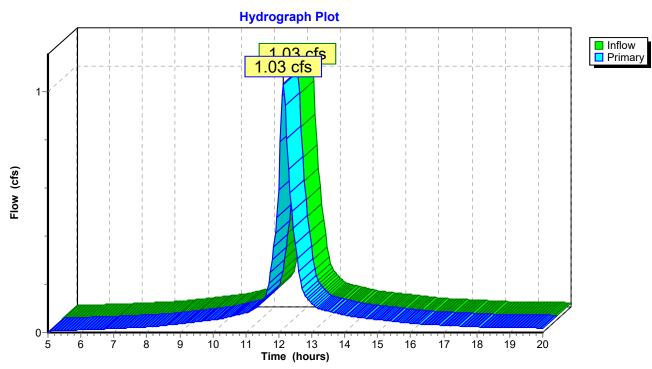
[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

[79] Warning: Submerged Pond CB-15A Primary device # 1 INLET by 0.41'

Inflow	=	1.03 cfs @ 12	2.14 hrs, Volume=	0.093 af
Outflow	=	1.03 cfs @ 12	2.14 hrs, Volume=	0.093 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.03 cfs @ 12	2.14 hrs, Volume=	0.093 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 390.21' Storage= 8 cf

Plug-Flow detention time= 0.5 min calculated for 0.093 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
389.68	16	0	0
392.30	16	42	42

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
	Primary		12.0" x 181.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 380.11' S= 0.0529 '/' n= 0.012 Cc= 0.900

Pond CB-15: CB-15

Pond CB-15A: CB-15A

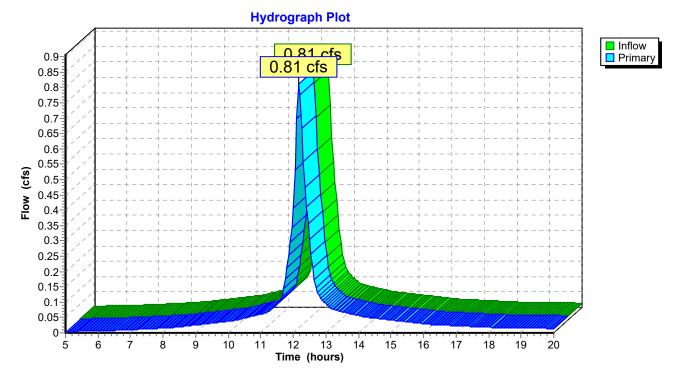
[82] Warning: Early inflow requires earlier time span [85] Warning: Oscillations may require Finer Routing>1

Inflow	=	0.81 cfs @	12.16 hrs, Volume=	0.071 af
Outflow	=	0.81 cfs @	12.16 hrs, Volume=	0.071 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.81 cfs @	12.16 hrs, Volume=	0.071 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 390.33' Storage= 8 cf Plug-Flow detention time= 0.6 min calculated for 0.071 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
389.80	16	0	0
392.30	16	40	40


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

389.80' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 389.68' S= 0.0050 '/' n= 0.010 Cc= 0.900

Pond CB-15A: CB-15A

Pond CB-16: CB-16

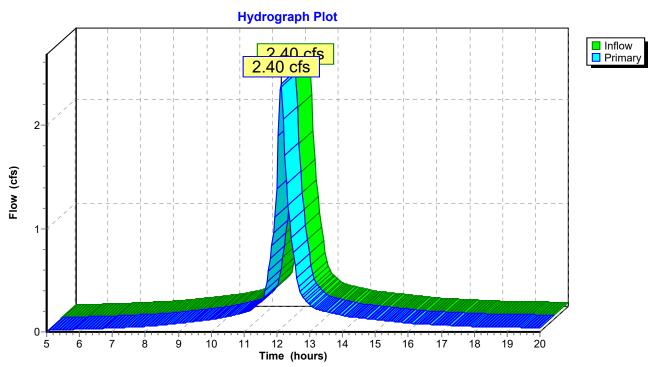
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-15 Primary device # 1 OUTLET by 0.78'

Inflow	=	2.40 cfs @	12.13 hrs, Volume	e= 0.209 af	
Outflow	=	2.40 cfs @	12.13 hrs, Volume	e= 0.209 af,	Atten= 0%, Lag= 0.1 min
Primary	=	2.40 cfs @	12.13 hrs, Volume	e= 0.209 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 380.90' Storage= 14 cf

Plug-Flow detention time= 0.3 min calculated for 0.209 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
380.00	16	0	0
383.09	16	49	49

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	380.00'	12.0" x 209.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 374.00' S= 0.0287 '/' n= 0.012 Cc= 0.900

Pond CB-16: CB-16

Pond CB-16A: CB-16A

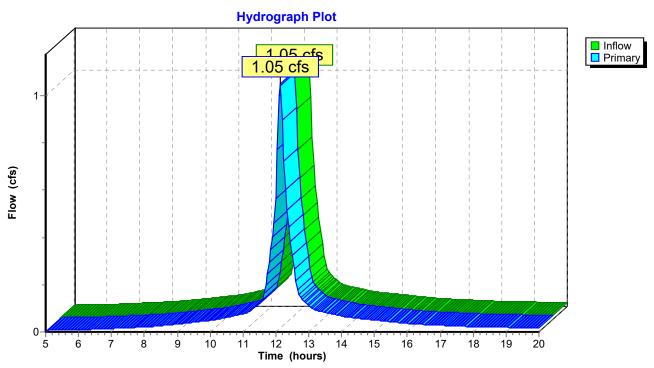
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

Inflow	=	1.05 cfs @	12.13 hrs, Volume=	0.087 af
Outflow	=	1.05 cfs @	12.14 hrs, Volume=	0.087 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.05 cfs @	12.14 hrs, Volume=	0.087 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 381.98' Storage= 9 cf

Plug-Flow detention time= 0.6 min calculated for 0.086 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
381.40	16	0	0
383.09	16	27	27

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	381.40'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 381.20' S= 0.0083 '/' n= 0.012 Cc= 0.900

Pond CB-16A: CB-16A

Pond CB-17: CB-17

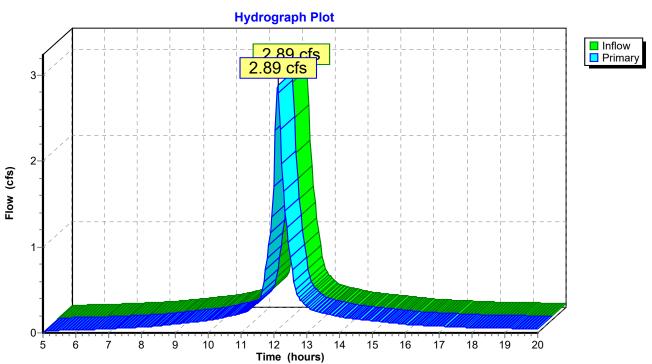
[82] Warning: Early inflow requires earlier time span [79] Warning: Submerged Pond CB-16 Primary device # 1 OUTLET by 1.27'

Inflow	=	2.89 cfs @	12.12 hrs, Volu	ume= 0.	.249 af
Outflow	=	2.89 cfs @	12.12 hrs, Volu	ume= 0.	.249 af, Atten= 0%, Lag= 0.2 min
Primary	=	2.89 cfs @	12.12 hrs, Volu	ume= 0.	.249 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 375.28' Storage= 20 cf

Plug-Flow detention time= 0.3 min calculated for 0.248 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
374.01	16	0	0
377.51	16	56	56

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

374.01' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 373.89' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-17: CB-17

Pond CB-17A: CB-17A

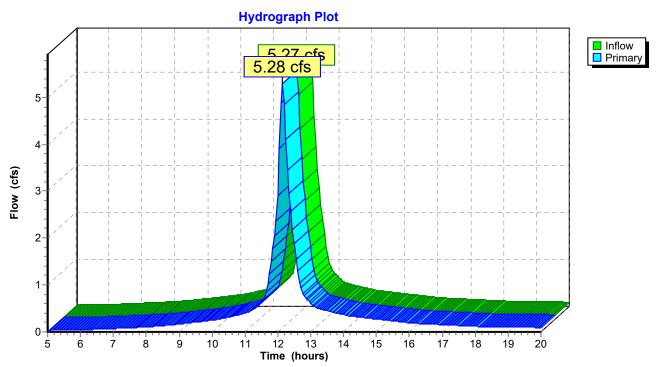
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[80] Warning: Exceeded Pond CB-17 by 1.99' @ 12.15 hrs (5.34 cfs)

Inflow	=	5.27 cfs @	12.14 hrs, Volume=	0.463 af
Outflow	=	5.28 cfs @	12.15 hrs, Volume=	0.463 af, Atten= 0%, Lag= 0.3 min
Primary	=	5.28 cfs @	12.15 hrs, Volume=	0.463 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 377.23' Storage= 53 cf

Plug-Flow detention time= 0.2 min calculated for 0.462 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
373.89	16	0	0
377.57	16	59	59

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	373.89'	12.0" x 93.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 373.43' S= 0.0049 '/' n= 0.012 Cc= 0.900

Pond CB-17A: CB-17A

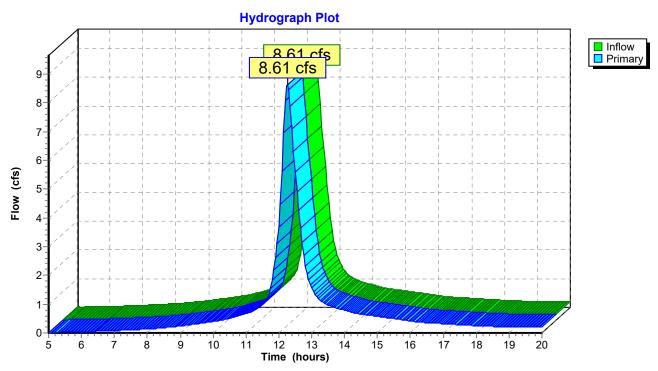
Pond CB-18: CB-18

[88] Warning: Qout>Qin may require Finer Routing>1 [85] Warning: Oscillations may require Finer Routing>1

[79] Warning: Submerged Pond CB-18A Primary device # 1 INLET by 1.15'

Inflow	=	8.61 cfs @	12.26 hrs, Volu	me= 0.882 af	
Outflow	=	8.61 cfs @	12.26 hrs, Volu	me= 0.882 af,	Atten= 0%, Lag= 0.0 min
Primary	=	8.61 cfs @	12.26 hrs, Volu	me= 0.882 af	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 418.71' Storage= 28 cf

Plug-Flow detention time= 0.1 min calculated for 0.879 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
416.94	16	0	0
420.56	16	58	58

Primary OutFlow (Free Discharge)

#	Ro	uting	Invert	Outlet Devices
1	Prir	mary	416.94'	18.0" x 345.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 412.97' S= 0.0115 '/' n= 0.012 Cc= 0.900

Pond CB-18: CB-18

Pond CB-18A: CB-18A AND B

[82] Warning: Early inflow requires earlier time span [85] Warning: Oscillations may require Finer Routing>1

Inflow	=	7.72 cfs @	12.27 hrs, Volume=	0.795 af
Outflow	=	7.72 cfs @	12.27 hrs, Volume=	0.794 af, Atten= 0%, Lag= 0.1 min
Primary	=	7.72 cfs @	12.27 hrs, Volume=	0.794 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 419.39' Storage= 29 cf Plug-Flow detention time= 0.2 min calculated for 0.792 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
417.59	16	0	0
420.56	16	48	48

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

1	Primary	417.56'	18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 417.44' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-18A: CB-18A AND B

Pond CB-19: CB-19

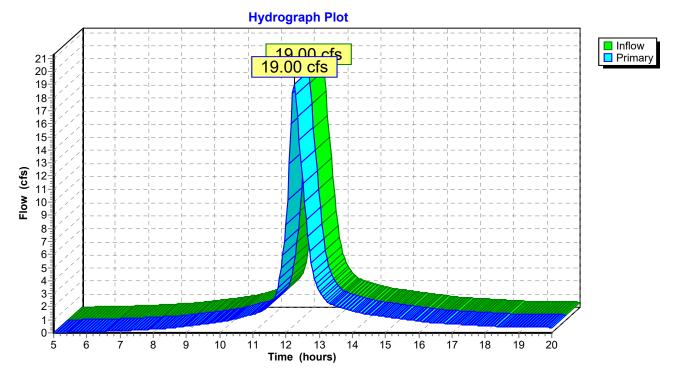
[79] Warning: Submerged Pond CB-18 Primary device # 1 OUTLET by 1.98' [79] Warning: Submerged Pond CB-19A Primary device # 1 OUTLET by 1.48'

Inflow	=	19.00 cfs @	12.25 hrs,	Volume=	1.888 af
Outflow	=	19.00 cfs @	12.25 hrs,	Volume=	1.888 af, Atten= 0%, Lag= 0.0 min
Primary	=	19.00 cfs @	12.25 hrs,	Volume=	1.888 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 414.95' Storage= 41 cf Plug-Flow detention time= 0.1 min calculated for 1.881 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
412.37	16	0	0
416.47	16	66	66


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

412.37' 24.0" x 228.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 409.25' S= 0.0137 '/' n= 0.012 Cc= 0.900

Pond CB-19: CB-19

Pond CB-19A: CB-19A

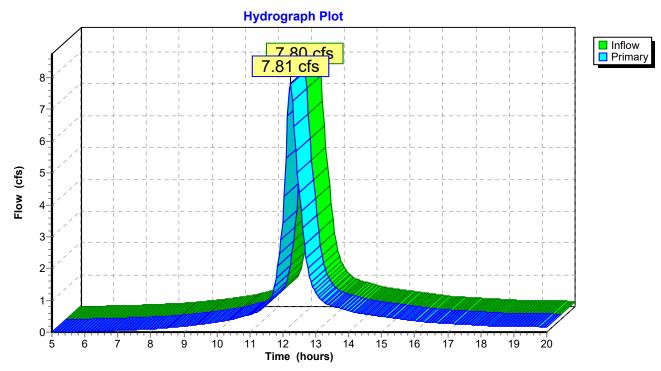
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	7.80 cfs @ 12.23 hrs	s, Volume=	0.748 af
Outflow	=	7.81 cfs @ 12.23 hrs	s, Volume=	0.748 af, Atten= 0%, Lag= 0.1 min
Primary	=	7.81 cfs @ 12.23 hrs	s, Volume=	0.748 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 416.56' Storage= 25 cf

Plug-Flow detention time= 0.1 min calculated for 0.748 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
414.97	16	0	0
416.64	16	27	27

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 414.97' 1 Primary Outlet Invert= 413.47' S= 0.0625 '/' n= 0.012 Cc= 0.900

Pond CB-19A: CB-19A

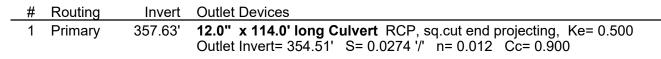
Pond CB-2: CB-2

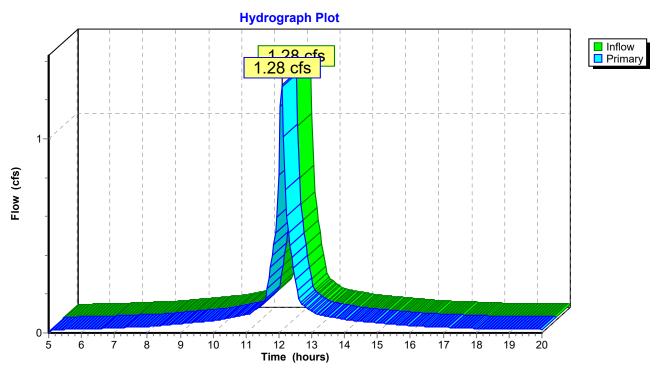
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[80] Warning: Exceeded Pond CB-1 by 0.01' @ 12.10 hrs (0.10 cfs)

Inflow	=	1.28 cfs @	12.09 hrs, Volume=	0.099 af
Outflow	=	1.28 cfs @	12.09 hrs, Volume=	0.099 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.28 cfs @	12.09 hrs, Volume=	0.099 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 358.22' Storage= 10 cf

Plug-Flow detention time= 0.5 min calculated for 0.098 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
357.63	16	0	0
360.25	16	42	42

Primary OutFlow (Free Discharge)

Pond CB-2: CB-2

Pond CB-20: CB-20

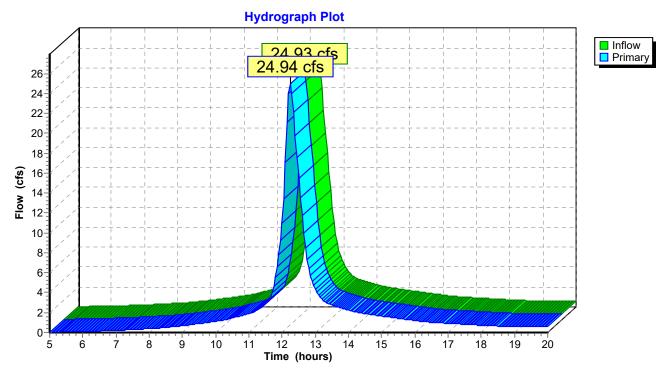
[91] Warning: Storage range exceeded by 0.21'

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-19 Primary device # 1 INLET by 0.59'

[80] Warning: Exceeded Pond CB-20A by 0.75' @ 12.20 hrs (3.28 cfs)

Inflow	=	24.93 cfs @	12.25 hrs, Volume=	2.524 af
Outflow	=	24.94 cfs @	12.25 hrs, Volume=	2.524 af, Atten= 0%, Lag= 0.1 min
Primary	=	24.94 cfs @	12.25 hrs, Volume=	2.524 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 412.96' Storage= 59 cf Plug-Flow detention time= 0.1 min calculated for 2.524 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
409.25	16	0	0
412.75	16	56	56

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
	Primary		24.0" x 170.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 405.65' S= 0.0212 '/' n= 0.012 Cc= 0.900

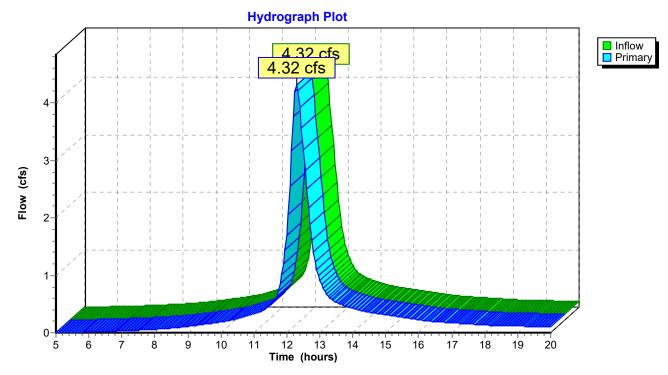
Pond CB-20: CB-20

Pond CB-20A: CB-20A

Inflow	=	4.32 cfs @	12.30 hrs, Volume=	0.457 af
Outflow	=	4.32 cfs @	12.30 hrs, Volume=	0.457 af, Atten= 0%, Lag= 0.2 min
Primary	=	4.32 cfs @	12.30 hrs, Volume=	0.457 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 412.30' Storage= 29 cf


Plug-Flow detention time= 0.2 min calculated for 0.456 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
410.50	16	0	0
412.75	16	36	36

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	410.50'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 410.25' S= 0.0104 '/' n= 0.012 Cc= 0.900

Pond CB-20A: CB-20A

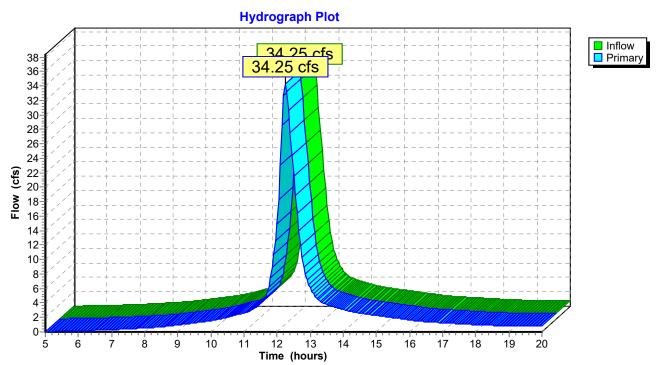
Pond CB-21: CB-21

[85] Warning: Oscillations may require Finer Routing>1 [79] Warning: Submerged Pond CB-20 Primary device # 1 OUTLET by 3.03' [80] Warning: Exceeded Pond CB-21A by 0.32' @ 12.25 hrs (4.82 cfs)

Inflow	=	34.25 cfs @	12.25 hrs, Volume=	= 3.484 af
Outflow	=	34.25 cfs @	12.25 hrs, Volume=	= 3.484 af, Atten= 0%, Lag= 0.0 min
Primary	=	34.25 cfs @	12.25 hrs, Volume=	= 3.484 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 408.68' Storage= 54 cf Plug-Flow detention time= 0.1 min calculated for 3.484 af (100% of inflow)


Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
405.33	16	0	0
409.63	16	69	69

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	405.33'	30.0" x 136.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 403.00' S= 0.0171 '/' n= 0.012 Cc= 0.900

Pond CB-21: CB-21

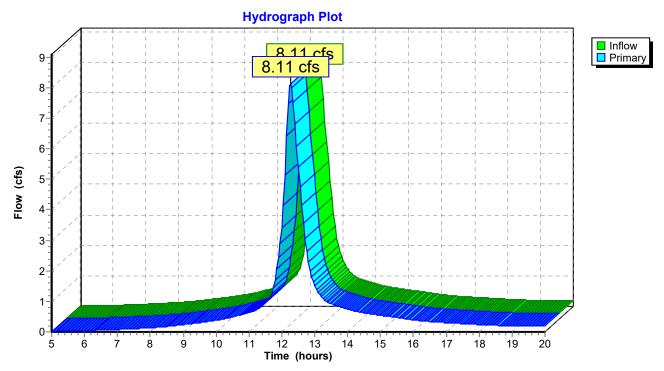
Pond CB-21A: CB-21A

[82] Warning: Early inflow requires earlier time span

[85] Warning: Oscillations may require Finer Routing>1

[79] Warning: Submerged Pond CB-21C Primary device # 1 INLET by 0.14'

Inflow	=	8.11 cfs @	12.27 hrs, Volume=	0.839 af
Outflow	=	8.11 cfs @	12.27 hrs, Volume=	0.839 af, Atten= 0%, Lag= 0.1 min
Primary	=	8.11 cfs @	12.27 hrs, Volume=	0.839 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 408.37' Storage= 27 cf Plug-Flow detention time= 0.1 min calculated for 0.837 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
406.71	16	0	0
409.71	16	48	48

Primary OutFlow (Free Discharge) -1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	406.71'	18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	-		Outlet Invert= 406.33' S= 0.0158 '/' n= 0.012 Cc= 0.900

Pond CB-21A: CB-21A

Pond CB-21C: CB-21C

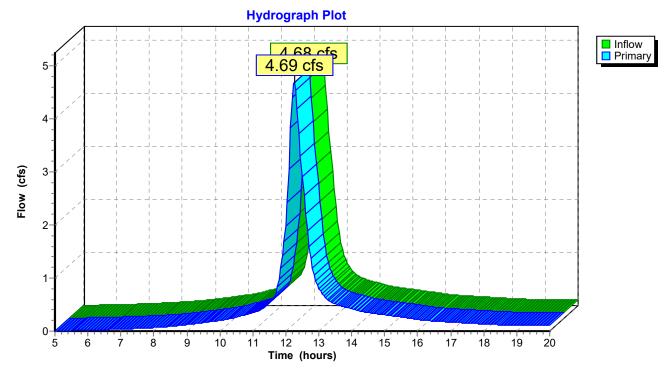
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	4.68 cfs @	12.26 hrs, Volume=	0.467 af
Outflow	=	4.69 cfs @	12.26 hrs, Volume=	0.467 af, Atten= 0%, Lag= 0.1 min
Primary	=	4.69 cfs @	12.26 hrs, Volume=	0.467 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 410.28' Storage= 33 cf

Plug-Flow detention time= 0.2 min calculated for 0.466 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
408.22	16	0	0
411.22	16	48	48

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

408.22' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 408.10' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-21C: CB-21C

Pond CB-22: CB-22

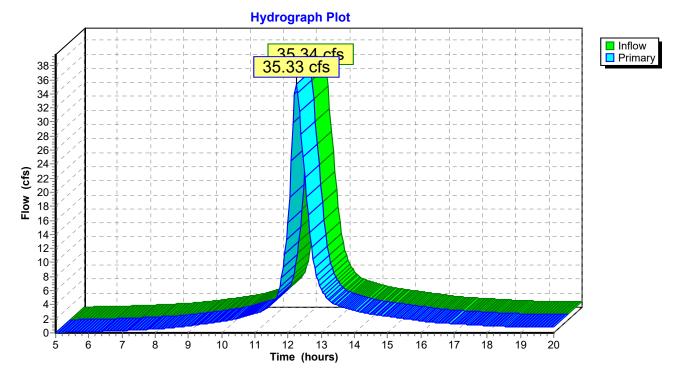
[79] Warning: Submerged Pond CB-21 Primary device # 1 INLET by 1.15' [80] Warning: Exceeded Pond CB-22A by 1.59' @ 12.25 hrs (4.27 cfs)

Inflow	=	35.34 cfs @	12.25 hrs,	Volume=	3.610 af
Outflow	=	35.33 cfs @	12.25 hrs,	Volume=	3.609 af, Atten= 0%, Lag= 0.0 min
Primary	=	35.33 cfs @	12.25 hrs,	Volume=	3.609 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 406.48' Storage= 56 cf Plug-Flow detention time= 0.1 min calculated for 3.597 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
403.00	16	0	0
407.16	16	67	67


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

403.00' 30.0" x 196.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 396.30' S= 0.0342 '/' n= 0.012 Cc= 0.900

Pond CB-22: CB-22

Pond CB-22A: CB-22A

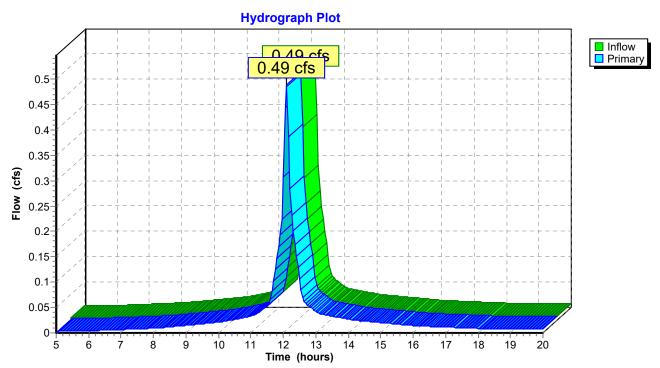
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

Inflow	=	0.49 cfs @	12.09 hrs,	Volume=	0.036 af
Outflow	=	0.49 cfs @	12.09 hrs,	Volume=	0.036 af, Atten= 0%, Lag= 0.2 min
Primary	=	0.49 cfs @	12.09 hrs,	Volume=	0.036 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 405.03' Storage= 7 cf Plug-Flow detention time= 0.9 min calculated for 0.036 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
404.62	16	0	0
407.20	16	41	41

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	404.62'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 404.50' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-22A: CB-22A

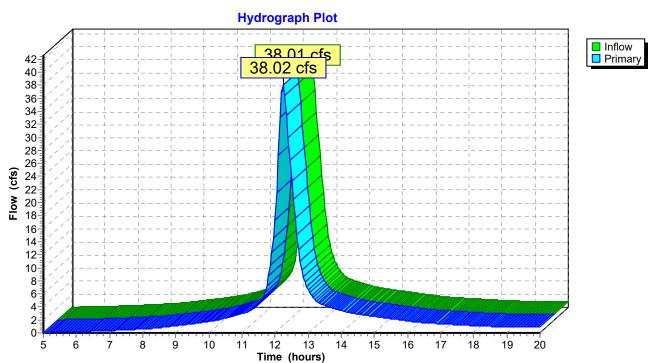
Pond CB-23: CB-23

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-22 Primary device # 1 OUTLET by 3.84' [80] Warning: Exceeded Pond CB-23A by 1.44' @ 12.25 hrs (4.54 cfs)

Inflow	=	38.01 cfs @	12.24 hrs, Volume=	3.888 af
Outflow	=	38.02 cfs @	12.24 hrs, Volume=	3.887 af, Atten= 0%, Lag= 0.0 min
Primary	=	38.02 cfs @	12.24 hrs, Volume=	3.887 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 400.15' Storage= 61 cf


Plug-Flow detention time= 0.1 min calculated for 3.887 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
396.31	16	0	0
400.43	16	66	66

Primary OutFlow (Free Discharge)

-1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	396.31'	30.0" x 135.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
	-		Outlet Invert= 383.20' S= 0.0971 '/' n= 0.012 Cc= 0.900

Pond CB-23: CB-23

Pond CB-23A: CB-23A

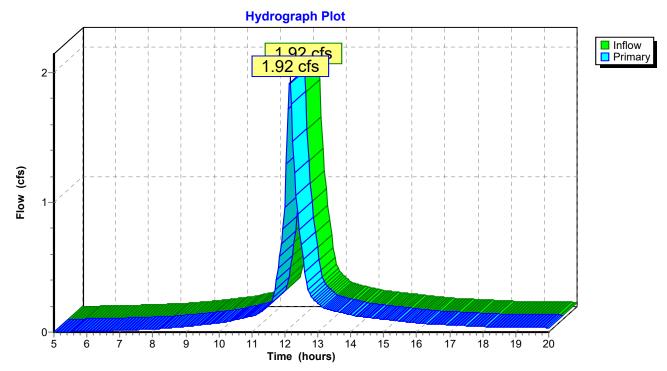
[88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	1.92 cfs @	12.15 hrs, Volume=	0.157 af
Outflow	=	1.92 cfs @	12.15 hrs, Volume=	0.157 af, Atten= 0%, Lag= 0.1 min
Primary	=	1.92 cfs @	12.15 hrs, Volume=	0.157 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 398.84' Storage= 15 cf

Plug-Flow detention time= 0.4 min calculated for 0.157 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
397.93	16	0	0
400.43	16	40	40

Primary OutFlow (Free Discharge)

Outlet Devices # Routing Invert

12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 397.93' 1 Primary Outlet Invert= 397.81' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-23A: CB-23A

Pond CB-24: CB-24

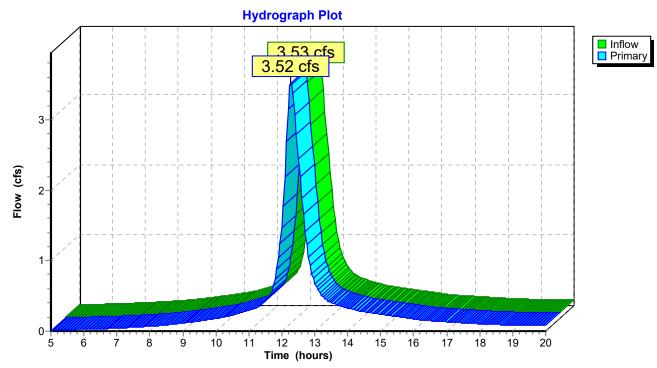
[82] Warning: Early inflow requires earlier time span

Inflow	=	3.53 cfs @	12.28 hrs, Volume=	0.376 af
Outflow	=	3.52 cfs @	12.28 hrs, Volume=	0.376 af, Atten= 0%, Lag= 0.0 min
Primary	=	3.52 cfs @	12.28 hrs, Volume=	0.376 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 425.74' Storage= 26 cf

Plug-Flow detention time= 0.3 min calculated for 0.375 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
424.09	16	0	0
427.50	16	55	55

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

424.09' 12.0" x 56.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 423.81' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-24: CB-24

Pond CB-25: CB-25

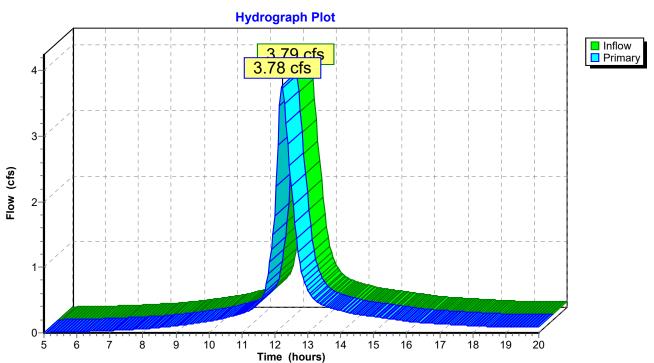
[82] Warning: Early inflow requires earlier time span [80] Warning: Exceeded Pond CB-25A by 0.58' @ 12.25 hrs (2.87 cfs)

Inflow	=	3.79 cfs @	12.22 hrs,	Volume=	0.386 af
Outflow	=	3.78 cfs @	12.22 hrs,	Volume=	0.386 af, Atten= 0%, Lag= 0.4 min
Primary	=	3.78 cfs @	12.22 hrs,	Volume=	0.386 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 429.58' Storage= 26 cf

Plug-Flow detention time= 0.2 min calculated for 0.386 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
427.97	16	0	0
430.59	16	42	42

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

427.97' 12.0" x 337.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 424.84' S= 0.0093 '/' n= 0.012 Cc= 0.900

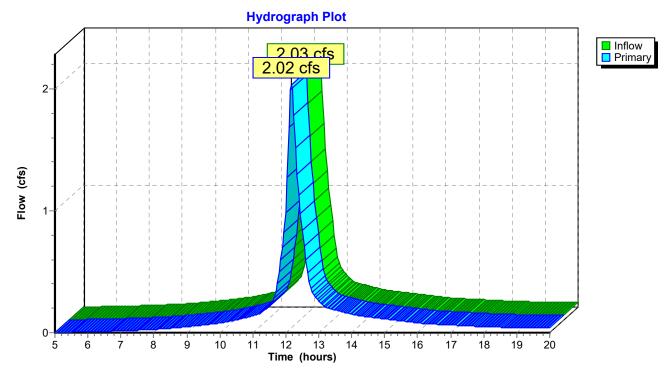
Pond CB-25: CB-25

Pond CB-25A: CB-25A

Inflow	=	2.03 cfs @ 12.17 hrs, Volume=	0.176 af
Outflow	=	2.02 cfs @ 12.18 hrs, Volume=	0.176 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.02 cfs @ 12.18 hrs, Volume=	0.176 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 429.04' Storage= 15 cf


Plug-Flow detention time= 0.3 min calculated for 0.176 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
428.09	16	0	0
430.59	16	40	40

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	428.09'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 427.97' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-25A: CB-25A

Pond CB-26: CB-26

[82] Warning: Early inflow requires earlier time span

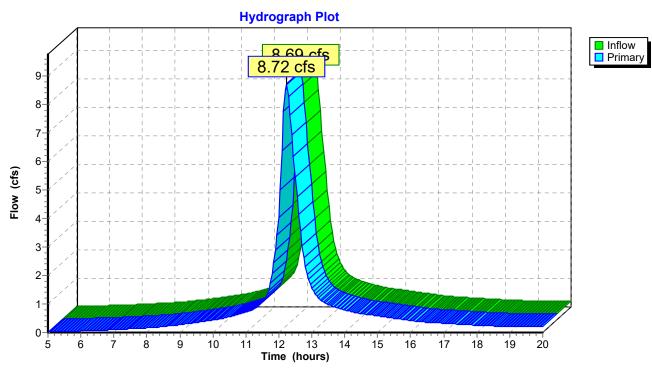
[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-25 Primary device # 1 OUTLET by 2.12'

[80] Warning: Exceeded Pond CB-26A by 0.83' @ 12.25 hrs (3.45 cfs)

Inflow	=	8.69 cfs @ 12.23 hrs, Volume=	0.914 af
Outflow	=	8.72 cfs @ 12.24 hrs, Volume=	0.914 af, Atten= 0%, Lag= 0.3 min
Primary	=	8.72 cfs @ 12.24 hrs, Volume=	0.914 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 426.98' Storage= 34 cf Plug-Flow detention time= 0.2 min calculated for 0.911 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
424.83	16	0	0
427.83	16	48	48

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
	Primary		18.0" x 132.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 424.12' S= 0.0054 '/' n= 0.012 Cc= 0.900

Pond CB-26: CB-26

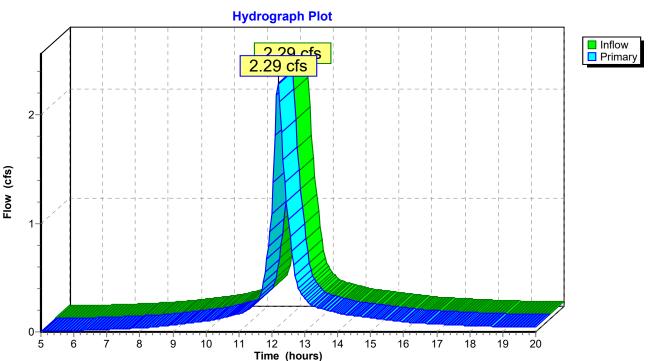
Pond CB-26A: CB-26A

[82] Warning: Early inflow requires earlier time span [88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	2.29 cfs @	12.19 hrs, Volume=	0.207 af
Outflow	=	2.29 cfs @	12.19 hrs, Volume=	0.207 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.29 cfs @	12.19 hrs, Volume=	0.207 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 426.18' Storage= 14 cf Plug-Flow detention time= 0.3 min calculated for 0.207 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
425.31	16	0	0
427.81	16	40	40

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

425.31' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 424.83' S= 0.0200 '/' n= 0.012 Cc= 0.900

Pond CB-26A: CB-26A

Pond CB-27A: CB-27A

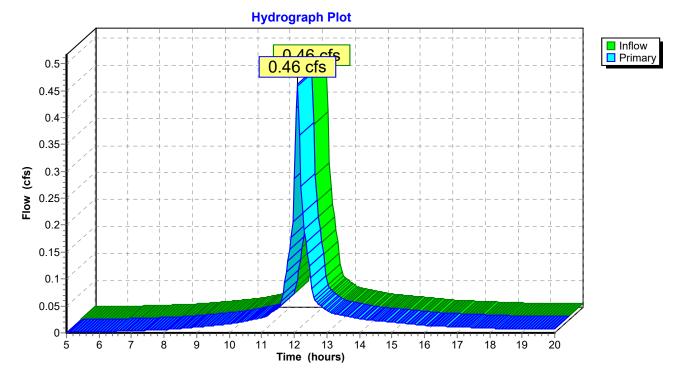
[82] Warning: Early inflow requires earlier time span [88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	0.46 cfs @	12.09 hrs,	Volume=	0.033 af
Outflow	=	0.46 cfs @	12.09 hrs,	Volume=	0.033 af, Atten= 0%, Lag= 0.1 min
Primary	=	0.46 cfs @	12.09 hrs,	Volume=	0.033 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 424.95' Storage= 5 cf Plug-Flow detention time= 0.7 min calculated for 0.033 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
424.61	16	0	0
427.11	16	40	40


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

424.61' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 423.61' S= 0.0417 '/' n= 0.012 Cc= 0.900

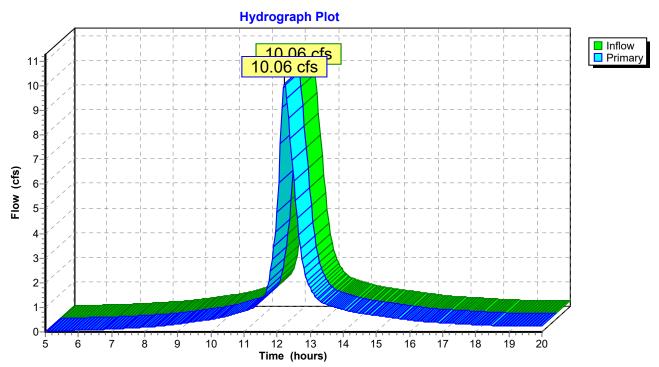
Pond CB-27A: CB-27A

Pond CB-27B: CB-27.B

[85] Warning: Oscillations may require Finer Routing>1
[79] Warning: Submerged Pond CB-26 Primary device # 1 INLET by 0.92'
[80] Warning: Exceeded Pond CB-27A by 0.91' @ 12.25 hrs (3.02 cfs)

Inflow	=	10.06 cfs @	12.23 hrs, Volume=	1.056 af
Outflow	=	10.06 cfs @	12.23 hrs, Volume=	1.056 af, Atten= 0%, Lag= 0.1 min
Primary	=	10.06 cfs @	12.23 hrs, Volume=	1.056 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 425.76' Storage= 34 cf

Plug-Flow detention time= 0.1 min calculated for 1.052 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
423.61	16	0	0
427.11	16	56	56

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	423.61'	18.0" x 84.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 420.95' S= 0.0317 '/' n= 0.012 Cc= 0.900

Pond CB-27B: CB-27.B

Pond CB-28: CB-28

[88] Warning: Qout>Qin may require Finer Routing>1 [80] Warning: Exceeded Pond CB-28A by 0.50' @ 12.25 hrs (6.02 cfs)

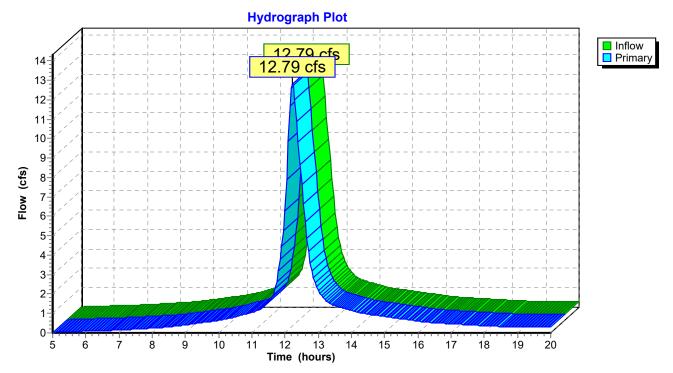
Inflow	=	12.79 cfs @	12.23 hrs, Vo	olume=	1.335 af
Outflow	=	12.79 cfs @	12.23 hrs, Vo	olume=	1.335 af, Atten= 0%, Lag= 0.1 min
Primary	=	12.79 cfs @	12.23 hrs, Vo	olume=	1.335 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 423.84' Storage= 48 cf Plug-Flow detention time= 0.1 min calculated for 1.335 af (100% of inflow)

Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
420.83	16	0	0
424.45	16	58	58


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

420.83' 18.0" x 16.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 420.75' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-28: CB-28

Pond CB-28A: CB-28A

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-27B Primary device # 1 OUTLET by 2.37'

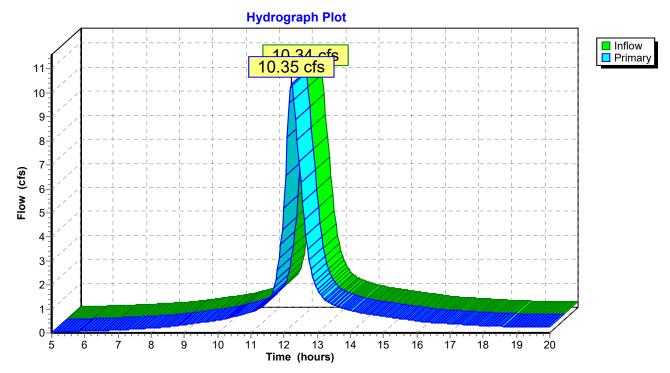
Inflow	=	10.34 cfs @	12.23 hrs,	Volume=	1.098 af
Outflow	=	10.35 cfs @	12.23 hrs,	Volume=	1.098 af, Atten= 0%, Lag= 0.1 min
Primary	=	10.35 cfs @	12.23 hrs,	Volume=	1.098 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 423.33' Storage= 38 cf

Plug-Flow detention time= 0.1 min calculated for 1.094 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
420.95	16	0	0
424.45	16	56	56


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

420.95' 18.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 420.83' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-28A: CB-28A

Pond CB-3: CB-3

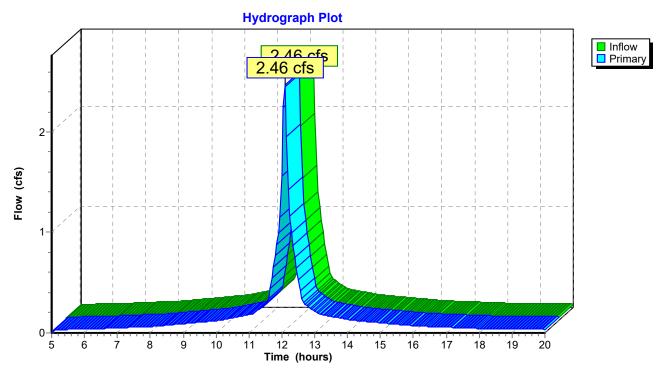
[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-2 Primary device # 1 OUTLET by 1.08'

Inflow	=	2.46 cfs @	12.09 hrs,	Volume=	0.190 af
Outflow	=	2.46 cfs @	12.09 hrs,	Volume=	0.190 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.46 cfs @	12.09 hrs,	Volume=	0.190 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 355.60' Storage= 18 cf

Plug-Flow detention time= 0.5 min calculated for 0.190 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
354.50	16	0	0
357.50	16	48	48

Primary OutFlow (Free Discharge)

#	Routing	Invert	Outlet Devices
1	Primary	354.50'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 354.38' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-3: CB-3

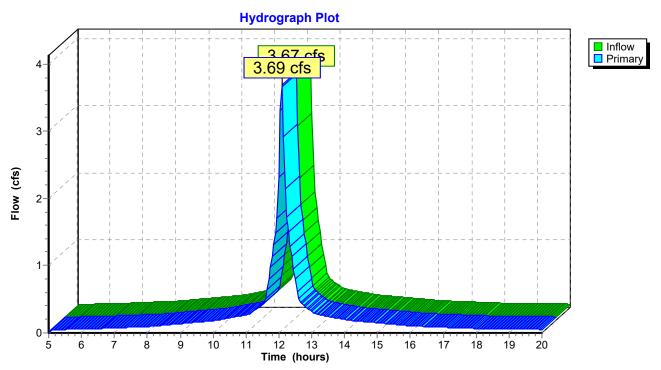
Pond CB-4: CB-4

[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[80] Warning: Exceeded Pond CB-3 by 0.39' @ 12.10 hrs (2.38 cfs)

Inflow	=	3.67 cfs @	12.09 hrs, Volume=	0.284 af
Outflow	=	3.69 cfs @	12.09 hrs, Volume=	0.284 af, Atten= 0%, Lag= 0.1 min
Primary	=	3.69 cfs @	12.09 hrs, Volume=	0.284 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 355.99' Storage= 26 cf Plug-Flow detention time= 0.4 min calculated for 0.284 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
354.38	16	0	0
357.50	16	50	50

Primary OutFlow (Free Discharge)

_	#	Routing	Invert	Outlet Devices
_	1	Primary	354.38'	12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
				Outlet Invert= 354.26' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-4: CB-4

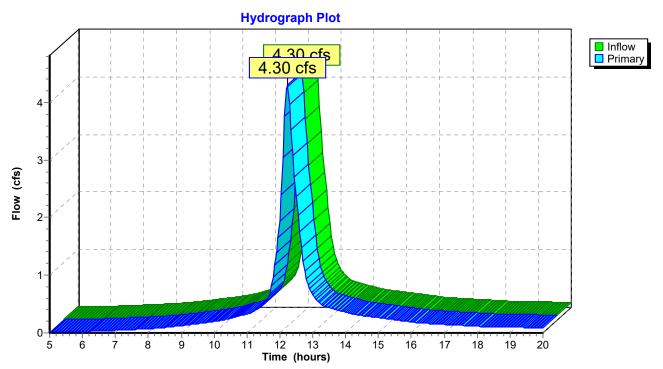
Pond CB-6: CB-6

[82] Warning: Early inflow requires earlier time span

[88] Warning: Qout>Qin may require Finer Routing>1

[85] Warning: Oscillations may require Finer Routing>1

Inflow	=	4.30 cfs @	12.23 hrs, Volume=	0.417 af
Outflow	=	4.30 cfs @	12.23 hrs, Volume=	0.417 af, Atten= 0%, Lag= 0.2 min
Primary	=	4.30 cfs @	12.23 hrs, Volume=	0.417 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 384.96' Storage= 29 cf Plug-Flow detention time= 0.2 min calculated for 0.416 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
383.17	16	0	0
385.27	16	34	34

Primary OutFlow (Free Discharge) -1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	383.17'	12.0" x 390.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500
			Outlet Invert= 0.00' S= 0.9825 '/' n= 0.017 Cc= 0.900

Pond CB-6: CB-6

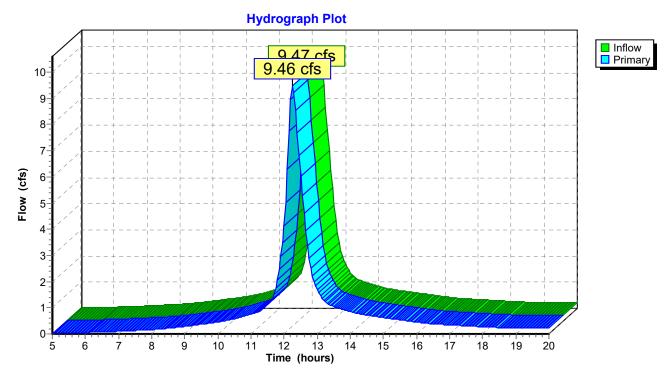
Pond CB-7: CB-7

Page 151

5/26/2021

[85] Warning: Oscillations may require Finer Routing>1 [79] Warning: Submerged Pond CB-6 Primary device # 1 OUTLET by 378.62' [80] Warning: Exceeded Pond CB-7A by 0.53' @ 12.25 hrs (2.75 cfs)

Inflow	=	9.47 cfs @	12.26 hrs, Volume=	0.974 af	
Outflow	=	9.46 cfs 🥘	12.26 hrs, Volume=	0.974 af, Atten= 0%	, Lag= 0.1 min
Primary	=	9.46 cfs @	12.26 hrs, Volume=	0.974 af	


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 378.63' Storage= 32 cf Plug-Flow detention time= 0.1 min calculated for 0.971 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
376.64	16	0	0
379.64	16	48	48

Primary OutFlow (Free Discharge) -1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	376.64'	18.0" x 160.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 373 76' S= 0.0180 '/' n= 0.012 Cc= 0.900

Pond CB-7: CB-7

Pond CB-7A: CB-7A

[82] Warning: Early inflow requires earlier time span [88] Warning: Qout>Qin may require Finer Routing>1

Inflow	=	2.61 cfs @	12.29 hrs, Volume=	0.277 af
Outflow	=	2.61 cfs @	12.29 hrs, Volume=	0.277 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.61 cfs @	12.29 hrs, Volume=	0.277 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 378.11' Storage= 16 cf Plug-Flow detention time= 0.3 min calculated for 0.276 af (100% of inflow) Storage and wetted areas determined by Prismatic sections


Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
377.14	16	0	0
379.64	16	40	

Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert **Outlet Devices**

377.14' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 376.64' S= 0.0208 '/' n= 0.012 Cc= 0.900

Pond CB-7A: CB-7A

Pond CB-9: CB-9

[88] Warning: Qout>Qin may require Finer Routing>1 [79] Warning: Submerged Pond CB-9A Primary device # 1 INLET by 0.20'

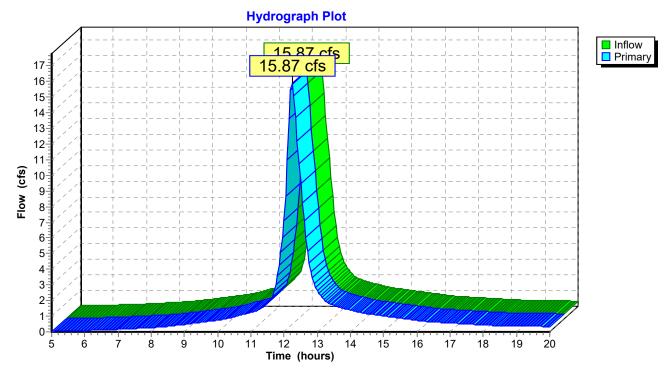
Inflow	=	15.87 cfs @	12.24 hrs,	Volume=	1.596 af
Outflow	=	15.87 cfs @	12.24 hrs,	Volume=	1.596 af, Atten= 0%, Lag= 0.0 min
Primary	=	15.87 cfs @	12.24 hrs,	Volume=	1.596 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 372.87' Storage= 36 cf

Plug-Flow detention time= 0.1 min calculated for 1.590 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
370.63	16	0	0
375.80	16	83	83


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

370.63' 24.0" x 190.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 369.68' S= 0.0050 '/' n= 0.012 Cc= 0.900

Pond CB-9: CB-9

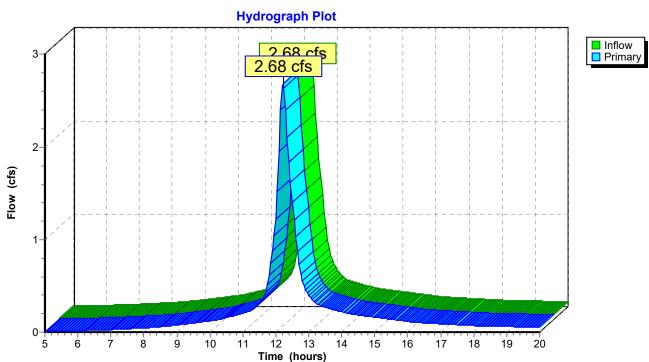
Pond CB-9A: CB-9A

[82] Warning: Early inflow requires earlier time span

Inflow	=	2.68 cfs @	12.22 hrs, Volume=	0.255 af
Outflow	=	2.68 cfs @	12.22 hrs, Volume=	0.255 af, Atten= 0%, Lag= 0.1 min
Primary	=	2.68 cfs @	12.22 hrs, Volume=	0.255 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 373.68' Storage= 16 cf


Plug-Flow detention time= 0.3 min calculated for 0.255 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
372.67	16	0	0
375.67	16	48	48

Primary OutFlow (Free Discharge)

Routing Invert **Outlet Devices**

372.67' 12.0" x 24.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 1 Primary Outlet Invert= 372.37' S= 0.0125 '/' n= 0.012 Cc= 0.900

Pond CB-9A: CB-9A

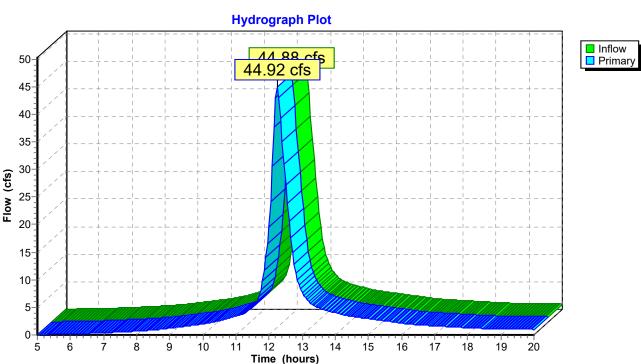
Pond DMH-1: DMH-1

[91] Warning: Storage range exceeded by 0.72'

[88] Warning: Qout>Qin may require Finer Routing>1

[79] Warning: Submerged Pond CB-23 Primary device # 1 OUTLET by 4.77'

Inflow	=	44.88 cfs @	12.25 hrs, Volume=	4.491 af
Outflow	=	44.92 cfs @	12.25 hrs, Volume=	4.491 af, Atten= 0%, Lag= 0.0 min
Primary	=	44.92 cfs @	12.25 hrs, Volume=	4.491 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 387.97' Storage= 76 cf Plug-Flow detention time= 0.1 min calculated for 4.476 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
383.25	16	0	0
387.25	16	64	64

Primary OutFlow (Free Discharge) -1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	383.25'	30.0" x 65.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 382.93' S= 0.0049 '/' n= 0.012 Cc= 0.900

Pond DMH-1: DMH-1

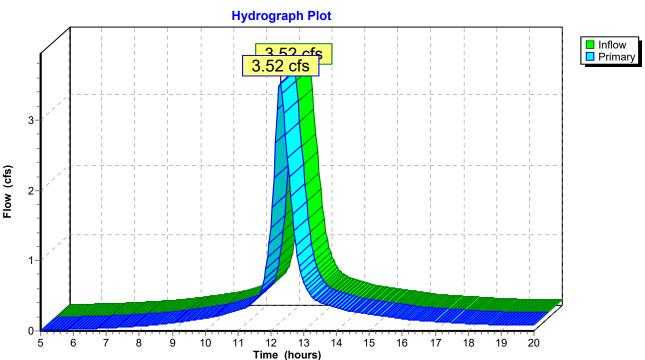
Pond DMH-2: DMH-2

[88] Warning: Qout>Qin may require Finer Routing>1 [85] Warning: Oscillations may require Finer Routing>1

[79] Warning: Submerged Pond CB-24 Primary device # 1 INLET by 1.09'

Inflow	=	3.52 cfs @	12.28 hrs, Volume=	0.376 af
Outflow	=	3.52 cfs @	12.29 hrs, Volume=	0.376 af, Atten= 0%, Lag= 0.3 min
Primary	=	3.52 cfs @	12.29 hrs, Volume=	0.376 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs


Peak Elev= 425.18' Storage= 22 cf

Plug-Flow detention time= 0.2 min calculated for 0.375 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
423.81	16	0	0
428.67	16	78	78

Primary OutFlow (Free Discharge) -1=Culvert

#	Routing	Invert	Outlet Devices
1	Primary	423.81'	12.0" x 151.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Outlet Invert= 421.38' S= 0.0161 '/' n= 0.012 Cc= 0.900

Pond DMH-2: DMH-2

Pond DMH-3: DMH-3

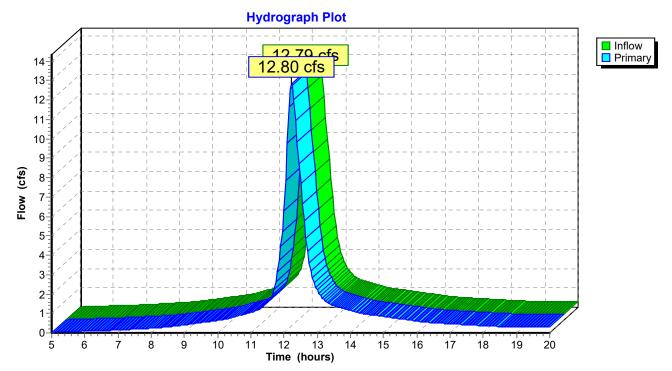
[88] Warning: Qout>Qin may require Finer Routing>1 [80] Warning: Exceeded Pond CB-28 by 0.75' @ 12.25 hrs (7.35 cfs)

Inflow	=	12.79 cfs @	12.23 hrs,	Volume=	1.335 af
Outflow	=	12.80 cfs @	12.24 hrs,	Volume=	1.335 af, Atten= 0%, Lag= 0.2 min
Primary	=	12.80 cfs @	12.24 hrs,	Volume=	1.335 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 424.58' Storage= 61 cf Plug-Flow detention time= 0.1 min calculated for 1.335 af (100% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
420.75	16	0	0
425.43	16	75	75


Primary OutFlow (Free Discharge)

-1=Culvert

Routing Invert Outlet Devices

420.75' 18.0" x 145.0' long Culvert RCP, sq.cut end projecting, Ke= 0.500 Primary 1 Outlet Invert= 420.02' S= 0.0050 '/' n= 0.012 Cc= 0.900

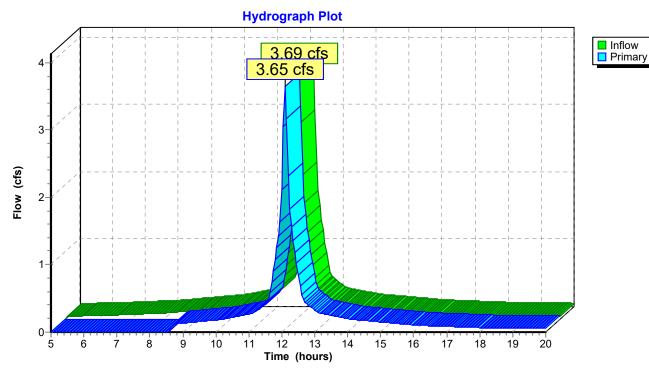
Pond DMH-3: DMH-3

Pond Forbay 1: FORBAY 1

Inflow	=	3.69 cfs @	12.09 hrs, Volume=	0.284 af
Outflow	=	3.65 cfs @	12.10 hrs, Volume=	0.262 af, Atten= 1%, Lag= 0.7 min
Primary	=	3.65 cfs @	12.10 hrs, Volume=	0.262 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 353.43' Storage= 1,155 cf


Plug-Flow detention time= 53.7 min calculated for 0.261 af (92% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sɑ-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
350.00	80	0	0
352.00 354.00	315 750	395	395
354.00	750	1,065	1,460

Primary OutFlow (Free Discharge) —1=Broad-Crested Rectangular Weir

 #	Routing	Invert	Outlet Devices
1	Primary	353.00'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond Forbay 1: FORBAY 1

Pond PLUNG 2: PLUNGE 2

Inflow	=	6.72 cfs @	12.17 hrs, Volu	ume=	0.698 af	
Outflow	=	6.69 cfs @	12.19 hrs, Volu	ume=	0.676 af, A	tten= 1%, Lag= 1.2 min
Primary	=	6.69 cfs @	12.19 hrs, Volu	ume=	0.676 af	-

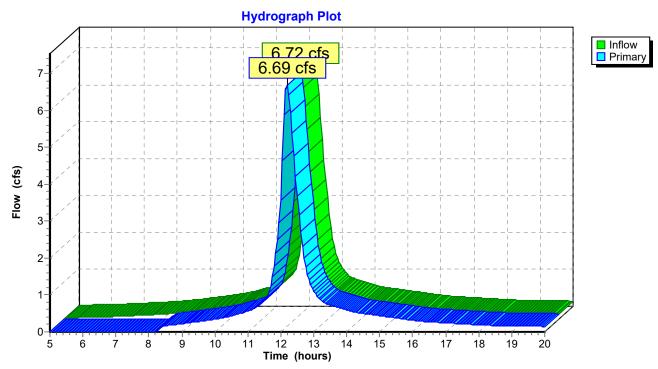
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 366.64' Storage= 1,577 cf

Plug-Flow detention time= 24.7 min calculated for 0.674 af (97% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
363.00	100	0	0
364.00	150	125	125
366.00	622	772	897
367.00	1,500	1,061	1,958

Primary OutFlow (Free Discharge)


1

-1=Broad-Crested Rectangular Weir

Routing Invert **Outlet Devices**

> Primary 366.00' 5.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond PLUNG 2: PLUNGE 2

Pond PLUNGE 1: PLUNGE 1

[91] Warning: Storage range exceeded by 0.88'

Inflow	=	16.50 cfs @	12.24 hrs, Volume=	1.695 af
Outflow	=	16.48 cfs @	12.25 hrs, Volume=	1.652 af, Atten= 0%, Lag= 0.7 min
Primary	=	16.48 cfs @	12.25 hrs, Volume=	1.652 af

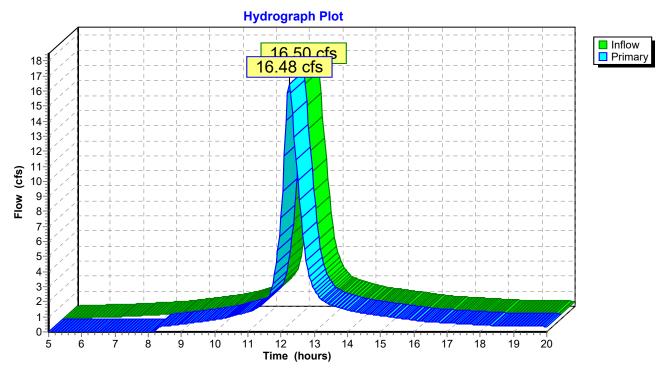
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 362.88' Storage= 2,559 cf

Plug-Flow detention time= 19.7 min calculated for 1.652 af (97% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
358.00	50	0	0
362.00	1,000	2,100	2,100

Primary OutFlow (Free Discharge)


1

-1=Broad-Crested Rectangular Weir

Routing Invert **Outlet Devices**

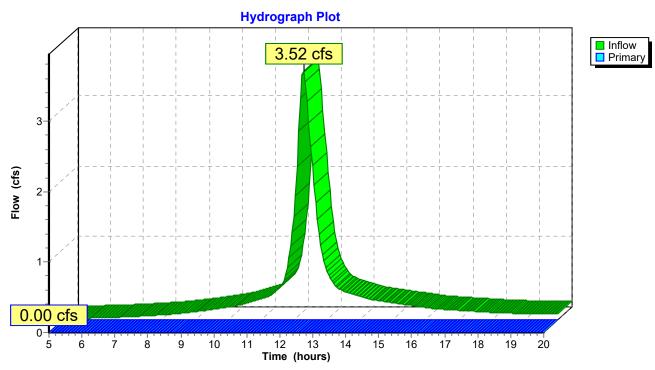
> Primary 361.50' 5.0' long x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

Pond PLUNGE 1: PLUNGE 1

Pond PLUNGE 4: PLUNGE 4

[91] Warning: Storage range exceeded by 64.81' [80] Warning: Exceeded Pond DMH-2 by 64.81' @ 19.95 hrs (21.56 cfs)

Inflow	=	3.52 cfs @	12.29 hrs, Volume=	0.376 af
Outflow	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af, Atten= 100%, Lag= 0.0 min
Primary	=	0.00 cfs @	5.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Peak Elev= 488.81' Storage= 16,367 cf Plug-Flow detention time= (not calculated) Storage and wetted areas determined by Prismatic sections

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
420.00	40	0	0
422.00	125	165	165
424.00	360	485	650

Primary OutFlow (Free Discharge) —1=Broad-Crested Rectangular Weir

 #	Routing	Invert	Outlet Devices
1	Primary	424.00'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

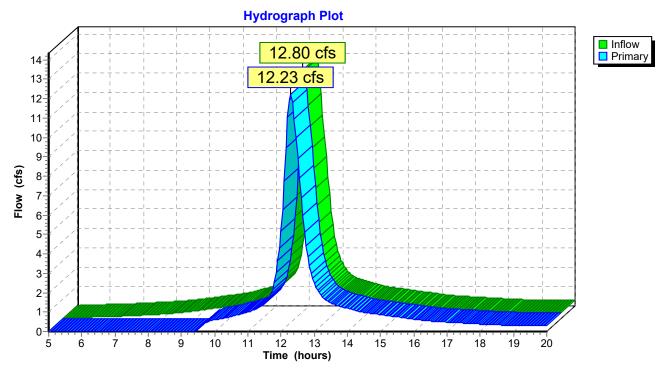
Pond PLUNGE 4: PLUNGE 4

Pond PLUNGE 5: PLUNGE 5

[91] Warning: Storage range exceeded by 0.56'

Inflow	=	12.80 cfs @	12.24 hrs, Volume=	1.335 af
Outflow	=	12.23 cfs @	12.29 hrs, Volume=	1.258 af, Atten= 4%, Lag= 3.4 min
Primary	=	12.23 cfs @	12.29 hrs, Volume=	1.258 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

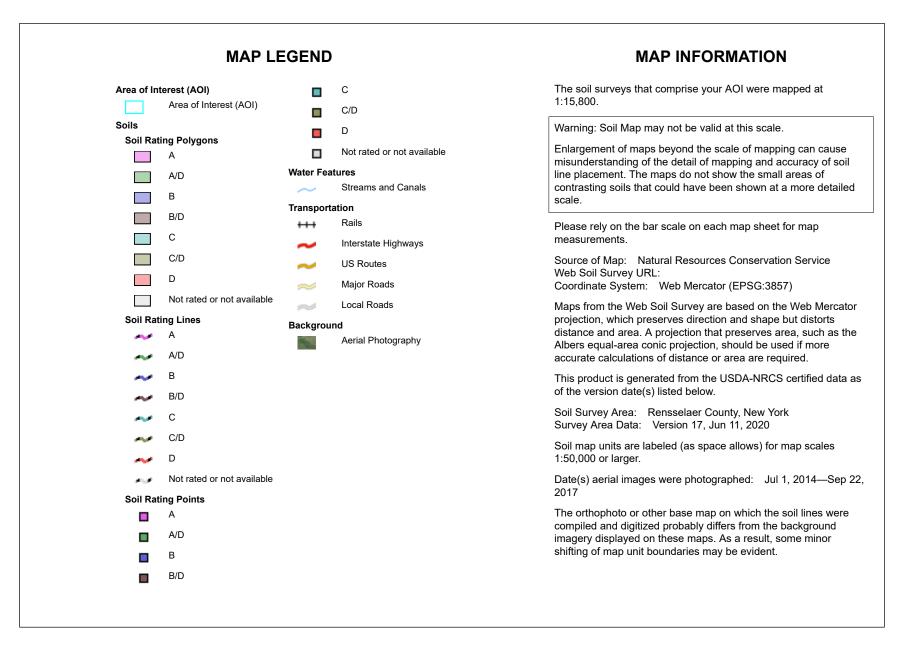

Peak Elev= 418.56' Storage= 6,231 cf

Plug-Flow detention time= 41.5 min calculated for 1.254 af (94% of inflow) Storage and wetted areas determined by Prismatic sections

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
414.00	125	0	0
416.00	700	825	825
417.00	900	800	1,625
418.00	5,000	2,950	4,575

Primary OutFlow (Free Discharge) —1=Broad-Crested Rectangular Weir

 #	Routing	Invert	Outlet Devices
1	Primary	417.50'	5.0' long x 2.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32



Pond PLUNGE 5: PLUNGE 5

APPENDIX D

Soils Mapping

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AnA	Alden silt loam, 0 to 3 percent slopes	C/D	9.9	10.2%
BeB	Bernardston gravelly silt loam, 3 to 8 percent slopes	C/D	1.9	2.0%
BeC	Bernardston gravelly silt loam, 8 to 15 percent slopes	C/D	2.9	3.0%
BeD	Bernardston gravelly silt loam, 15 to 25 percent slopes	C/D	0.6	0.6%
BnB	Bernardston-Nassau complex, undulating	C/D	26.8	27.6%
BnC	Bernardston-Nassau complex, rolling	C/D	26.4	27.1%
MbA	Madalin silt loam, 0 to 3 percent slopes	C/D	4.6	4.7%
NtA	Natchaug muck, 0 to 2 percent slopes	B/D	17.7	18.2%
PtB	Pittstown gravelly silt loam, 3 to 8 percent slopes	С	0.8	0.8%
RaA	Raynham silt loam, 0 to 5 percent slopes	C/D	4.2	4.3%
SrB	Scriba silt loam, 3 to 8 percent slopes	D	0.6	0.6%
W	Water		0.8	0.8%
Totals for Area of Inter	rest		97.3	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX E

GI Worksheets

Is this project su	bject to Chapte	r 10 of the NYS Des	ign Manual (i.e. W	'Qv is equal to	post-	
development 1 y	vear runoff volu	me)?				No
Design Point:	1		Manually ont	er P, Total Are	a and Impor	vious Covor
P=	1.15	inch	wanuuny en	er P, Totul Ale	a una imperi	nous cover.
		Breakdow	n of Subcatchme	nts		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description
1	0.58	0.58	100%	0.95	2,300	Dry Swale
2						
3						
4						
5						
6						
7						
8						
9						
10						
Subtotal (1-30)	0.58	0.58	100%	0.95	2,300	Subtotal 1
Total	0.58	0.58	100%	0.95	2,300	Initial WQv

	Identify Runoff R	eduction Techniqu	ies By Area
Technique	Total Contributing Area	Contributing Impervious Area	Notes
	(Acre)	(Acre)	
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet
Filter Strips	0.00	0.00	
Tree Planting	0.00	0.00	<i>Up to 100 sf directly connected impervious area may be subtracted per tree</i>
Total	0.00	0.00	

Recalcula	ate WQv after app	olication of Area Re	duction Tech	niques	
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ³)
"< <initial td="" wqv"<=""><td>0.58</td><td>0.58</td><td>100%</td><td>0.95</td><td>2,300</td></initial>	0.58	0.58	100%	0.95	2,300
Subtract Area	0.00	0.00			
WQv adjusted after Area Reductions	0.58	0.58	100%	0.95	2,300
Disconnection of Rooftops		0.00			
Adjusted WQv after Area Reduction and Rooftop Disconnect	0.58	0.58	100%	0.95	2,300
WQv reduced by Area Reduction techniques					0

	Runoff Reduction	Volume	and Treated	volumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
duct	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Rec	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olui	Rain Garden	RR-6	0.00	0.00	0	
у//е	Stormwater Planter	RR-7	0.00	0.00	0	
Area	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
4	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.00	0.00	0	0
1Ps city	Infiltration Basin	I-2	0.00	0.00	0	0
l SN apa	Dry Well	I-3	0.00	0.00	0	0
lard v Ca	Underground Infiltration System	I-4				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	0.00	0.00	0	0
	Dry swale	0-1	0.58	0.58	571	1729
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
S	Pocket Pond (p-5)	P-5				
SMPs	Surface Sand filter (F-1)	F-1				
	Underground Sand filter (F-2)	F-2				
Standard	Perimeter Sand Filter (F-3)	F-3				
Stai	Organic Filter (F-4	F-4				
	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2	0.00	0.00	<u>^</u>	
	Totals by Area Reduction		0.00	0.00	0	
	Totals by Volume Reduction		0.00			
	Totals by Standard SMP w/RRV	\rightarrow	0.58	0.58	571	1729
	Totals by Standard SMP		0.00	0.00		0
T	otals (Area + Volume + all SMPs)	\rightarrow	0.58	0.58	571	1,729
	Impervious Cover V	okay				

Enter the Soils Da	ta for the site	
Soil Group	Acres	S
А		55%
В		40%
С		30%
D	100.00	20%
Total Area	100	
Calculate the Min	imum RRv	
S =	0.20	
Impervious =	0.58	acre
Precipitation	1.15	in
Rv	0.95	
Minimum RRv	460	ft3
	0.01	af

#	NOI Question	Reported Value		
		cf	af	
28	Total Water Quality Volume (WQv) Required	2300	0.053	
30	Total RRV Provided	571	0.013	
31	Is RRv Provided ≥WQv Required?	No		
32	Minimum RRv	460	0.011	
32a	Is RRv Provided ≥ Minimum RRv Required?	Yes		
33a	Total WQv Treated	1729	0.040	
34	Sum of Volume Reduced & Treated	2300	0.053	
34	Sum of Volume Reduced and Treated	2300	0.053	
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes		

	Apply Peak Flow Attenuation							
36	Channel Protection	Срv						
37	Overbank	Qp						
37	Extreme Flood Control	Qf						
	Are Quantity Control requirements met?							

Dry Swale Worksheet

Design Point:	1						
	Enter	Site Data For	Drainage Area	a to be 1	Freated by	Practice	
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description
1	0.58	0.58	1.00	0.95	2300.15	1.15	Dry Swale
Enter Imperviou by Disconnection		0.00	100%	0.95	2,300	< <wqv ac<br="" after="">Disconnected R</wqv>	
		nent Provided	1		I	Pretreatment T	
Pretrea	atment (10% of	· · · · · · · · · · · · · · · · · · ·	230	ft ³		Plunge Po	lool
		Calculat	e Available St	orage C	apacity		
Bottom Width	8	ft	-				ht feet to avoid less than two feet
Side Slope (X:1)	4	Okay	Channels sha than 3:1) for absolute max	most co	nditions. 2	n moderate side :1 is the	slopes (flatter
Longitudinal Slope	1%	Okay	Maximum loi	ngitudin	al slope sho	all be 4%	
Flow Depth	1.5	ft		a maxin	num depth	e foot at the mic of 18" at the er y)	
Top Width	20	ft			•	Τ _w	
Area	21.00	sf				d	
Minimum Length	99	ft				d	
Actual Length	125	ft				B _w	
End Point Depth check	1.50	Okay	A maximum of storage of the		18" at the	end point of the	e channel (for
Storage Capacity	2,855	ft ³					
Soil Group (HSG)	-	D				
			Runoff Redu	uction			
Is the Dry Swale practice?	contributing flo	ow to another		Select	Practice		
RRv	571	ft ³	Runnoff Reduction equals 40% in HSG A and B and 20% in HSG C and D up to the WQv				
Volume Treated	1,729	ft ³	This is the dif reduction ach				ted and the runoff
Volume Directed	0	ft ³	This volume is directed another practice				
Volume √	Okay		Check to be s	ure that	channel is	long enough to	store WQv

Design Point:

1

Is this project su	bject to Chapte	r 10 of the NYS Des	ign Manual (i.e. W	'Qv is equal to	post-					
development 1 y	development 1 year runoff volume)? No									
Design Point:				ter P, Total Are		vious Covor				
P=	1.15	inch	wanuuny en							
		Breakdow	n of Subcatchme	nts						
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description				
1	1.67	0.83	50%	0.50	3,467	Dry Swale				
2										
3										
4										
5										
6										
7										
8										
9										
10										
Subtotal (1-30)	1.67	0.83	50%	0.50	3,467	Subtotal 1				
Total	1.67	0.83	50%	0.50	3,467	Initial WQv				

Identify Runoff Reduction Techniques By Area								
Technique	Total Contributing Area Contributing		Notes					
	(Acre)	(Acre)						
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf					
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to					
	0.00	0.00	150 feet					
Filter Strips	0.00	0.00						
Tree Planting	0.00	0.00	Up to 100 sf directly connected impervious					
i i e i lanting	0.00	0.00	area may be subtracted per tree					
Total	0.00	0.00						

Recalculate WQv after application of Area Reduction Techniques									
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ³)				
"< <initial td="" wqv"<=""><td>1.67</td><td>0.83</td><td>50%</td><td>0.50</td><td>3,467</td></initial>	1.67	0.83	50%	0.50	3,467				
Subtract Area	0.00	0.00							
WQv adjusted after Area Reductions	1.67	0.83	50%	0.50	3,467				
Disconnection of Rooftops		0.00							
Adjusted WQv after Area Reduction and Rooftop Disconnect	1.67	0.83	50%	0.50	3,467				
WQv reduced by Area Reduction techniques					0				

	Runoff Reduction Volume and Treated volumes							
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated		
			(acres)	(acres)	cf	cf		
	Conservation of Natural Areas	RR-1	0.00	0.00				
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00				
duc	Tree Planting/Tree Pit	RR-3	0.00	0.00				
Red	Disconnection of Rooftop Runoff	RR-4		0.00				
me	Vegetated Swale	RR-5	0.00	0.00	0			
olu	Rain Garden	RR-6	0.00	0.00	0			
a/V	Stormwater Planter	RR-7	0.00	0.00	0			
Area	Rain Barrel/Cistern	RR-8	0.00	0.00	0			
	Porous Pavement	RR-9	0.00	0.00	0			
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0			
	Infiltration Trench	I-1	0.00	0.00	0	0		
1Ps city	Infiltration Basin	I-2	0.00	0.00	0	0		
l SN apa	Dry Well	I-3	0.00	0.00	0	0		
lard v Ca	Underground Infiltration System							
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention		0.00	0.00	0	0		
	Dry swale	0-1	1.67	0.83	699	2768		
	Micropool Extended Detention (P-1)	P-1						
	Wet Pond (P-2)	P-2						
	Wet Extended Detention (P-3)	P-3						
	Multiple Pond system (P-4)	P-4						
S	Pocket Pond (p-5)	P-5						
SMPs	Surface Sand filter (F-1)	F-1						
	Underground Sand filter (F-2)	F-2						
Standard	Perimeter Sand Filter (F-3)	F-3						
Stai	Organic Filter (F-4	F-4						
	Shallow Wetland (W-1)	W-1						
	Extended Detention Wetland (W-2	W-2						
	Pond/Wetland System (W-3)	W-3 W-4						
	Pocket Wetland (W-4)							
	Wet Swale (O-2)		0.00	0.00	<u>^</u>			
	Totals by Area Reduction		0.00	0.00	0			
┣───	Totals by Volume Reduction		0.00	0.00	0			
	Totals by Standard SMP w/RRV		1.67	0.83	699	2768		
	Totals by Standard SMP		0.00	0.00		0		
T	otals (Area + Volume + all SMPs)		1.67	0.83	699	2,768		
	Impervious Cover V	okay						

Enter the Soils Da	Enter the Soils Data for the site				
Soil Group	Acres	S			
А		55%			
В		40%			
С		30%			
D	100.00	20%			
Total Area	100				
Calculate the Min	imum RRv				
S =	0.20				
Impervious =	0.83	acre			
Precipitation	1.15	in			
Rv	0.95				
Minimum RRv	658	ft3			
	0.02	af			

#	NOI Question	Reported Value		
		cf	af	
28	Total Water Quality Volume (WQv) Required	3467	0.080	
30	Total RRV Provided	699	0.016	
31	Is RRv Provided ≥WQv Required?	No		
32	Minimum RRv	658	0.015	
32a	Is RRv Provided ≥ Minimum RRv Required?	Yes		
33a	Total WQv Treated	2768	0.064	
34	Sum of Volume Reduced & Treated	3467	0.080	
34	Sum of Volume Reduced and Treated	3467	0.080	
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes		

	Apply Peak Flow Attenuation							
36	Channel Protection	Срv						
37	Overbank	Qp						
37	Extreme Flood Control	Qf						
	Are Quantity Control requirements met?							

Dry Swale Worksheet

Design Point:	2A]					
	Enter	Site Data For	Drainage Area	a to be 1	Freated by	Practice	
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description
1	1.67	0.83	0.50	0.50	3466.92	1.15	Dry Swale
Enter Imperviou by Disconnectio	n of Rooftops	0.00	50%	0.50	3,467	< <wqv ac<br="" after="">Disconnected R</wqv>	ooftops
		nent Provided	1		I	Pretreatment T	•
Pretrea	atment (10% of	· · · · · · · · · · · · · · · · · · ·	347	ft ³		Plunge Po	lool
		Calculat	e Available St	orage C	apacity		
Bottom Width	8	ft	-				ht feet to avoid less than two feet
Side Slope (X:1)	4	Okay	Channels sha than 3:1) for absolute max	most co	nditions. 2	moderate side :1 is the	slopes (flatter
Longitudinal Slope	1%	Okay	Maximum loi	ngitudin	al slope sho	all be 4%	
Flow Depth	1.5	ft		a maxin	num depth	e foot at the mia of 18" at the en y	
Top Width	20	ft			•	Ťw	
Area	21.00	sf			-		
Minimum Length	149	ft				d	
Actual Length	150	ft				B _W	
End Point Depth check	1.50	Okay	A maximum of storage of the		18" at the	end point of the	e channel (for
Storage Capacity	3,497	ft ³					
Soil Group (HSG	i)	•	D				
			Runoff Redu	iction			
Is the Dry Swale practice?	contributing flo	ow to another		Select	Practice		
RRv	699	ft ³	Runnoff Reduction equals 40% in HSG A and B and 20% in HSG C and D up to the WQv				
Volume Treated	2,768	ft ³	This is the dif reduction ach			•	ted and the runoff
Volume Directed	0	ft ³	This volume is directed another practice				
Volume √	Okay	Check to be sure that channel is long enough to store WQv					

Design Point:

2A

Version 1.8Last Upda**Tet**al 10/2015 lity Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

	• •	r 10 of the NYS Des	•	•	•				
development 1 y	development 1 year runoff volume)? No								
Design Point:	2B		Manually ont	er P, Total Are	a and Impor	vious Covor			
P=	1.15	inch	wanuuny en	er P, Totul Are	a ana imperv	ious cover.			
		Breakdow	n of Subcatchme	nts					
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description			
1	5.79	2.70	47%	0.47	11,353	Bioretention			
2									
3									
4									
5									
6									
7									
8									
9									
10									
Subtotal (1-30)	5.79	2.70	47%	0.47	11,353	Subtotal 1			
Total	5.79	2.70	47%	0.47	11,353	Initial WQv			

	Identify Runoff R	eduction Techniqu	ies By Area
Technique	Total Contributing Area	Contributing Impervious Area	Notes
	(Acre)	(Acre)	
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet
Filter Strips	0.00	0.00	
Tree Planting	0.00	0.00	<i>Up to 100 sf directly connected impervious area may be subtracted per tree</i>
Total	0.00	0.00	

Recalcula	ate WQv after app	lication of Area Re	duction Tech	niques	
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ³)
"< <initial td="" wqv"<=""><td>5.79</td><td>2.70</td><td>47%</td><td>0.47</td><td>11,353</td></initial>	5.79	2.70	47%	0.47	11,353
Subtract Area	0.00	0.00			
WQv adjusted after Area Reductions	5.79	2.70	47%	0.47	11,353
Disconnection of Rooftops		0.00			
Adjusted WQv after Area Reduction and Rooftop Disconnect	5.79	2.70	47%	0.47	11,353
WQv reduced by Area Reduction techniques					0

	Runoff Reduction V	olume a	nd Treated vo	olumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
duc	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Red	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olu	Rain Garden	RR-6	0.00	0.00	0	
a/V	Stormwater Planter	RR-7	0.00	0.00	0	
Area	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.00	0.00	0	0
1Ps city	Infiltration Basin	I-2	0.00	0.00	0	0
l SN apa	Dry Well	I-3	0.00	0.00	0	0
lard v Ca	Underground Infiltration System	I-4				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	5.79	2.70	2400	8953
	Dry swale	0-1	0.00	0.00	0	0
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
S	Pocket Pond (p-5)	P-5				
SMPs	Surface Sand filter (F-1)	F-1				
	Underground Sand filter (F-2)	F-2				
Standard	Perimeter Sand Filter (F-3)	F-3				
Stal	Organic Filter (F-4	F-4				
	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2	0.00	0.00		
	Totals by Area Reduction	\rightarrow	0.00	0.00	0	
	Totals by Volume Reduction	\rightarrow	0.00	0.00	0	
	Totals by Standard SMP w/RRV	\rightarrow	5.79	2.70	2400	8953
	Totals by Standard SMP	\rightarrow	0.00	0.00		0
T	otals (Area + Volume + all SMPs)	\rightarrow	5.79	2.70	2,400	8,953
	Impervious Cover V	okay				

Enter the Soils Da	ta for the site	
Soil Group	Acres	S
А		55%
В		40%
С		30%
D	100.00	20%
Total Area	100	
Calculate the Min	imum RRv	
S =	0.20	
Impervious =	2.70	acre
Precipitation	1.15	in
Rv	0.95	
Minimum RRv	2,142	ft3
	0.05	af

#	NOI Question	Reporte	d Value
		cf	af
28	Total Water Quality Volume (WQv) Required	11353	0.261
30	Total RRV Provided	2400	0.055
31	Is RRv Provided ≥WQv Required?	N	0
32	Minimum RRv	2142	0.049
32a	Is RRv Provided ≥ Minimum RRv Required?	Ye	S
33a	Total WQv Treated	8953	0.206
34	Sum of Volume Reduced & Treated	11353	0.261
34	Sum of Volume Reduced and Treated	11353	0.261
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Ye	!S

	Apply Peak Flow Attenuation		
36	Channel Protection	Срv	
37	Overbank	Qp	
37	Extreme Flood Control	Qf	
	Are Quantity Control requirements met?		

Bioretention Worksheet

(For use on HSG C or D Soils with underdrains) Af=WQv*(df)/[k*(hf+df)(tf)]

k

- Af Required Surface Area (ft2)
- WQv Water Quality Volume (ft3)

- df Depth of the Soil Medium (feet)
- hf Average height of water above the planter bed

Volume Through the Filter Media (days) tf

The hydraulic conductivity [ft/day], can be varied depending on the properties of the soil media. Some reported conductivity values are: Sand - 3.5 ft/day (City of Austin 1988); Peat - 2.0 ft/day (Galli 1990); Leaf Compost - 8.7 ft/day (Claytor and Schueler, 1996); Bioretention Soil (0.5 ft/day (Claytor &

Design Point:	2B						
	Enter	Site Data For	Drainage Are	a to be 🛛	Treated by	Practice	
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	$\mathbf{Rv} \qquad \frac{\mathbf{WQv} \mathbf{Precipitation}}{(ft^3)} \qquad \mathbf{Descr}$		Description	
1	5.79	2.70	0.47	0.47	11352.55	1.15	Bioretention
Enter Impervious by Disconnectior		0.00	47%	0.47	11,353	< <wqv ac<br="" after="">Disconnected R</wqv>	
Enter the portion routed to this pr		at is not redu	ced for all pra	ctices		ft ³	
			Soil Inform	ation			
Soil Group		D					
Soil Infiltration F	Rate	0.10	in/hour	Okay			
Using Underdrai	ns?	Yes	Okay				
		Calcula	te the Minim	um Filte	er Area		
				V	'alue	Units	Notes
	WQv			11	L,353	ft ³	
Enter	Depth of Soil M	edia	df		2.5	ft	2.5-4 ft
Enter H	ydraulic Conduc	ctivity	k		0.5	ft/day	
Enter Ave	rage Height of F	Ponding	hf		0.5	ft	6 inches max.
Er	nter Filter Time		tf		2	days	
Req	uired Filter Are		Af		460	ft ²	
		Determi	ne Actual Bio	-Retenti	on Area		
Filter Width		50	ft				
Filter Length		100	ft				
Filter Area		5000	ft ²				
Actual Volume P	rovided	6000	ft ³				
		Dete	ermine Runof	f Reduct	tion		
Is the Bioretenti another practice	-	flow to		Select	Practice		
RRv		2,400					
RRv applied		2,400	ft ³		40% of the ver is less.	storage provid	ed or WQv
Volume Treated		8,953	ft ³	This is t the prac		of the WQv tha	t is not reduced in
Volume Directed	k	0	ft ³	This vol	ume is dire	ected another p	ractice
Sizing √		Error	ľ	Check to	be sure Are	a provided $\geq Af$	

(For use on HSG C or D Soils with underdrains)

Is this project su	bject to Chapte	r 10 of the NYS Des	ign Manual (i.e. W	'Qv is equal to	post-	
development 1 y	vear runoff volu	me)?				No
Design Point:	3		Manually on	er P, Total Are	a and Impor	vious Cover
P=	1.15	inch	wunuuny en	er P, Totul Ale	a unu imperi	nous cover.
		Breakdow	n of Subcatchme	nts		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description
1	1.06	0.65	61%	0.60	2,663	Dry Swale
2						
3						
4						
5						
6						
7						
8						
9						
10						
Subtotal (1-30)	1.06	0.65	61%	0.60	2,663	Subtotal 1
Total	1.06	0.65	61%	0.60	2,663	Initial WQv

	Identify Runoff R	eduction Techniqu	ies By Area
Technique	Total Contributing Area	Contributing Impervious Area	Notes
	(Acre)	(Acre)	
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet
Filter Strips	0.00	0.00	
Tree Planting	0.00	0.00	<i>Up to 100 sf directly connected impervious area may be subtracted per tree</i>
Total	0.00	0.00	

Recalcula	ate WQv after app	lication of Area Re	duction Tech	niques	
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ³)
"< <initial td="" wqv"<=""><td>1.06</td><td>0.65</td><td>61%</td><td>0.60</td><td>2,663</td></initial>	1.06	0.65	61%	0.60	2,663
Subtract Area	0.00	0.00			
WQv adjusted after Area Reductions	1.06	0.65	61%	0.60	2,663
Disconnection of Rooftops		0.00			
Adjusted WQv after Area Reduction and Rooftop Disconnect	1.06	0.65	61%	0.60	2,663
WQv reduced by Area Reduction techniques					0

	Runoff Reduction	Volume	and Treated	volumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
luct	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Rec	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olui	Rain Garden	RR-6	0.00	0.00	0	
у//е	Stormwater Planter	RR-7	0.00	0.00	0	
Area	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
4	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.00	0.00	0	0
1Ps city	Infiltration Basin	I-2	0.00	0.00	0	0
l SN apa	Dry Well	I-3	0.00	0.00	0	0
lard v Ca	Underground Infiltration System	I-4				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	0.00	0.00	0	0
	Dry swale	0-1	1.06	0.65	977	1686
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
S	Pocket Pond (p-5)	P-5				
SMPs	Surface Sand filter (F-1)	F-1				
	Underground Sand filter (F-2)	F-2				
Standard	Perimeter Sand Filter (F-3)	F-3				
Stai	Organic Filter (F-4	F-4				
	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2	0.00	0.00	-	
	Totals by Area Reduction		0.00	0.00	0	
	Totals by Volume Reduction		0.00	0.00	0	
	Totals by Standard SMP w/RRV		1.06	0.65	977	1686
	Totals by Standard SMP		0.00	0.00		0
T	otals (Area + Volume + all SMPs)	\rightarrow	1.06	0.65	977	1,686
	Impervious Cover V	okay				

Enter the Soils Da	ta for the site	
Soil Group	Acres	S
А		55%
В		40%
С		30%
D	100.00	20%
Total Area	100	
Calculate the Min	imum RRv	
S =	0.20	
Impervious =	0.65	acre
Precipitation	1.15	in
Rv	0.95	
Minimum RRv	516	ft3
	0.01	af

#	NOI Question	Reported Value		
		cf	af	
28	Total Water Quality Volume (WQv) Required	2663	0.061	
30	Total RRV Provided	977	0.022	
31	Is RRv Provided ≥WQv Required?	No		
32	Minimum RRv	516	0.012	
32a	Is RRv Provided ≥ Minimum RRv Required?	Yes		
33a	Total WQv Treated	1686	0.039	
34	Sum of Volume Reduced & Treated		0.061	
34	Sum of Volume Reduced and Treated	2663	0.061	
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes		

	Apply Peak Flow Attenuation						
36	Channel Protection	Срv					
37	Overbank	Qp					
37	Extreme Flood Control	Qf					
	Are Quantity Control requirements met?						

Dry Swale Worksheet

Design Point:	3						
	Enter	Site Data For	Drainage Area	a to be 1	Freated by	Practice	
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description
1	1.06	0.65	0.61	0.60	2663.33	1.15	Dry Swale
Enter Imperviou by Disconnection		0.00	61%	0.60	2,663	< <wqv ac<br="" after="">Disconnected R</wqv>	-
		nent Provided	T		I	Pretreatment T	
Pretrea	tment (10% of		266	ft ³		Plunge Po	lool
		Calculat	e Available St	orage C	apacity		
Bottom Width	8	ft	-				ht feet to avoid less than two feet
Side Slope (X:1)	4	Okay	Channels sha than 3:1) for absolute max	most co	nditions. 2	moderate side :1 is the	slopes (flatter
Longitudinal Slope	1%	Okay	Maximum loi	ngitudin	al slope sho	all be 4%	
Flow Depth	1.5	ft		a maxin	num depth	e foot at the mia of 18" at the en y	
Top Width	20	ft			•	т _w	
Area	21.00	sf				d	
Minimum Length	114	ft				u	
Actual Length	220	ft				B _w	
End Point Depth check	1.50	Okay	A maximum of the storage of the		18" at the	end point of the	e channel (for
Storage Capacity	4,886	ft ³					
Soil Group (HSG)		D				
			Runoff Redu	uction			
Is the Dry Swale practice?	contributing flo	ow to another		Select	Practice		
RRv	977	ft ³	Runnoff Reduction equals 40% in HSG A and B and 20% in HSG C and D up to the WQv				
Volume Treated	1,686	ft ³	This is the difference between the WQv calculated and the runoff reduction achieved in the swale				
Volume Directed	0	ft ³	This volume is directed another practice				
Volume √	Okay		Check to be s	ure that	channel is	long enough to	store WQv

Design Point:

3

Is this project su	bject to Chapte	r 10 of the NYS Des	ign Manual (i.e. W	Qv is equal to	post-				
development 1 y	development 1 year runoff volume)? No								
Design Point:	a and Impor	vious Covor							
P=	1.15	inch	wunuuny en	er P, Total Are	a ana imperi	nous cover.			
		Breakdow	n of Subcatchme	nts					
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft ³)	Description			
1	9.80	3.61	37%	0.38	15,609	Dry Swale			
2						DA-18B			
3						DA-19			
4						DA-19A			
5						DA-20			
6						DA-20A			
7						DA-21			
8						DA-21A			
9						DA-21C			
10						DA-22			
Subtotal (1-30)	9.80	3.61	37%	0.38	15,609	Subtotal 1			
Total	9.80	3.61	37%	0.38	15,609	Initial WQv			

Identify Runoff Reduction Techniques By Area							
Technique	Total Contributing Area	Contributing Impervious Area	Notes				
	(Acre)	(Acre)					
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf				
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet				
Filter Strips	0.00	0.00					
Tree Planting	0.00	0.00	<i>Up to 100 sf directly connected impervious area may be subtracted per tree</i>				
Total	0.00	0.00					

Recalculate WQv after application of Area Reduction Techniques								
	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Runoff Coefficient Rv	WQv (ft ³)			
"< <initial td="" wqv"<=""><td>9.80</td><td>3.61</td><td>37%</td><td>0.38</td><td>15,609</td></initial>	9.80	3.61	37%	0.38	15,609			
Subtract Area	0.00	0.00						
WQv adjusted after Area Reductions	9.80	3.61	37%	0.38	15,609			
Disconnection of Rooftops		0.00						
Adjusted WQv after Area Reduction and Rooftop Disconnect	9.80	3.61	37%	0.38	15,609			
WQv reduced by Area Reduction techniques					0			

	Additional Subcatchments								
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Description			
11						DA-22A			
12						DA-23			
13						DA-23A			
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24									
25									
26									
27									
28									
29									
30									
Subtotal	0.00	0.00			0	Subtotal			

	Runoff Reduction	Volume	and Treated	volumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
duc	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Rec	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olu	Rain Garden	RR-6	0.00	0.00	0	
a/V	Stormwater Planter	RR-7	0.00	0.00	0	
Area	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.00	0.00	0	0
APs city	Infiltration Basin	I-2	0.00	0.00	0	0
l SN apa	Dry Well	I-3	0.00	0.00	0	0
larc v Ca	Underground Infiltration System	I-4				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention		0.00	0.00	0	0
	Dry swale	0-1	9.80	3.61	3252	12356
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
SC	Pocket Pond (p-5)	P-5				
SMPs	Surface Sand filter (F-1)	F-1				
	Underground Sand filter (F-2)	F-2				
Standard	Perimeter Sand Filter (F-3)	F-3				
Sta	Organic Filter (F-4	F-4				
	Shallow Wetland (W-1) Extended Detention Wetland (W-2	W-1 W-2				
	Pond/Wetland System (W-3)	W-2				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2				
	Totals by Area Reduction		0.00	0.00	0	
	Totals by Volume Reduction		0.00	0.00	0	
	Totals by Standard SMP w/RRV		9.80	3.61	3252	12356
	Totals by Standard SMP		0.00	0.00		0
Т	otals (Area + Volume + all SMPs)	\rightarrow	9.80	3.61	3,252	12,356
	Impervious Cover V	okay				

Enter the Soils Da	Enter the Soils Data for the site			
Soil Group	Acres	S		
А		55%		
В		40%		
С		30%		
D	100.00	20%		
Total Area	100			
Calculate the Min	imum RRv			
S =	0.20			
Impervious =	3.61	acre		
Precipitation	1.15	in		
Rv	0.95			
Minimum RRv	2,863	ft3		
	0.07	af		

#	NOI Question	Reported Value		
		cf	af	
28	Total Water Quality Volume (WQv) Required	15609	0.358	
30	Total RRV Provided 3252			
31	Is RRv Provided ≥WQv Required?	No		
32	Minimum RRv	2863		
32a	Is RRv Provided ≥ Minimum RRv Required?	Yes		
33a	Total WQv Treated	12356	0.284	
34	Sum of Volume Reduced & Treated		0.358	
34	Sum of Volume Reduced and Treated	15609	0.358	
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes		

	Apply Peak Flow Attenuation						
36	Channel Protection	Срv					
37	Overbank	Qp					
37	Extreme Flood Control	Qf					
	Are Quantity Control requirements met?						

Dry Swale Worksheet

5						
Enter	Site Data For	Drainage Area	a to be 1	Freated by	Practice	
Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description
9.80	3.61	0.37	0.38	15608.66	1.15	Dry Swale
s Area Reduced n of Rooftops	0.00	37%	0.38	15,609	< <wqv ac<br="" after="">Disconnected R</wqv>	ooftops
		1		F		
itment (10% of	· · · · · · · · · · · · · · · · · · ·	-			Plunge Po	lool
	Calculat	e Available St	orage C	apacity		
8	ft	-				
4	Okay	Channels shall be designed with moderate side slopes (flatter than 3:1) for most conditions. 2:1 is the absolute maximum side slope				
1%	Okay	Maximum loi	ngitudin	al slope sho	all be 4%	
1.5	ft	channel, and	a maxin	num depth	of 18" at the en	
20	ft					
21.00	sf				d	
669	ft				u	
700	ft				3 _w	
1.50	Okay			18" at the	end point of the	e channel (for
16,261	ft ³					
)	-	D				
		Runoff Redu	uction			
contributing flo	ow to another		Select	Practice		
3,252	ft ³	Runnoff Reduction equals 40% in HSG A and B and 20% in HSG C and D up to the WQv				
12,356	ft ³	This is the difference between the WQv calculated and the runoff reduction achieved in the swale				
0	ft ³	This volume is directed another practice				
Okay		Check to be s	ure that	channel is	long enough to	store WQv
	Enter Total Area (Acres) 9.80 5 Area Reduced of Rooftops Pretreatm tment (10% of Y 4 1% 1% 1.5 20 21.00 669 700 1.50 16,261) contributing flo 3,252 12,356 0	Enter Site Data ForTotal Area (Acres)Impervious Area (Acres)9.803.619.803.61\$ Area Reduced of Rooftops0.00Pretreatment Provided dument (10% of WQV) $Pretreatment Provided4Okay1%Okay1%Okay1.5ft20ft21.00sf669ft700ft1.50Okay16,261ft^312,356ft^30ft^3$	Inter Site Data For Drainage AreaTotal Area (Acres)Impervious Area (Acres)Percent Impervious %9.803.610.375 Area Reduced n of Rooftops0.0037%Pretreatment ProvidedInter (10% of WQV)1,561Calculate Available St8 ft Design with a potential gull otential gull4 $Okay$ Channels sha than 3:1) for absolute max1% $Okay$ Maximum low channel, and channel (for st20 ft $Maximum potchannel (for st20ftMaximum potchannel (for st20ftMaximum potchannel (for st1.50OkayA maximum ofstorage of thestorage of t$	Enter Site Data For Drainage Area to be 1Total Area (Acres)Impervious $Area(Acres)PercentImpervious\%Rv9.803.610.370.385 Area Reducedof Rooftops0.0037%0.38Pretreatment Providedtiment (10% of WQv)1,561ft^3Calculate Available Storage C8ftDesign with a bottompotential gullying andchannels shall be desidedthan 3:1) for most conditional solute maximum s1%OkayMaximum longitudin1.5ftMaximum longitudin1.5ftAmaximum depth ofstorage of the WQv)16,261ft^3D12,356ft^3Runnoff Reduction eand D up to the WQv12,356ft^3This volume is direct0ft^3This volume is direct$	Enter Site Data For Drainage Area to be Treated by Marea (Acres)Total Area (Acres)Impervious $Rrea(Acres)WQv(ft^3)9.803.610.370.3815608.665 Area Reducedto f Rooftops0.0037%0.3815,609Pretreatment ProvidedCalculate Available Storage Capacity8ftDesign with a bottom width nopotential gullying and channel b4OkayChannels shall be designed withthan 3:1) for most conditions. 2absolute maximum side slope1%OkayMaximum ponding depth of onechannel, and a maximum depthchannel (for storage of the WQv)1.5ftA maximum depth of 18" at thestorage of the WQv16,261ft^3DRunoff Reductioncontributing flow to another0ft^3This volume is directed another$	Enter Site Data For Drainage Area to be Treated by PracticeTotal Area (Acres)Impervious Area (Acres)Percent mpervious $\%$ WQv (ft^3) Precipitation (in)9.803.610.370.3815608.661.155 Area Reduced to of Rooftops0.0037%0.3815,609<<<

Design Point:

5

Version 1.8Last Upda**Tet**al 10/2015 lity Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to post-									
development 1 y	development 1 year runoff volume)? No								
Design Point:				er P, Total Are		ious Cover			
P=	1.15	inch	wandany en	err, rotur Are	u unu imperv	ious cover.			
		Breakdow	vn of Subcatchme	nts					
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Impervious Rv						
1	0.90	0.47	52%	0.52	1,954	Dry Swale			
2									
3									
4									
5									
6									
7									
8									
9									
10									
Subtotal (1-30)	0.90	0.47	52%	0.52	1,954	Subtotal 1			
Total	0.90	0.47	52%	0.52	1,954	Initial WQv			

Identify Runoff Reduction Techniques By Area								
Technique	Total Contributing Area Contributing		Notes					
	(Acre)	(Acre)						
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf					
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet					
Filter Strips	0.00	0.00						
Tree Planting	0.00	0.00	<i>Up to 100 sf directly connected impervious area may be subtracted per tree</i>					
Total	0.00	0.00						

Recalculate WQv after application of Area Reduction Techniques								
	Total Area (Acres)	Area Impervious Area (Acres) Impervious Coeffic		Runoff Coefficient Rv	WQv (ft ³)			
"< <initial td="" wqv"<=""><td>0.90</td><td>0.47</td><td>52%</td><td>0.52</td><td>1,954</td></initial>	0.90	0.47	52%	0.52	1,954			
Subtract Area	0.00	0.00						
WQv adjusted after Area Reductions	0.90	0.47	52%	0.52	1,954			
Disconnection of Rooftops		0.00						
Adjusted WQv after Area Reduction and Rooftop Disconnect	0.90	0.47	52%	0.52	1,954			
WQv reduced by Area Reduction techniques					0			

	Runoff Reduction	Volume	and Treated	volumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
luct	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Rec	Disconnection of Rooftop Runoff	RR-4		0.00		
ne	Vegetated Swale	RR-5	0.00	0.00	0	
olui	Rain Garden	RR-6	0.00	0.00	0	
у//е	Stormwater Planter	RR-7	0.00	0.00	0	
Area	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
4	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.00	0.00	0	0
1Ps city	Infiltration Basin	I-2	0.00	0.00	0	0
l SN apa	Dry Well	I-3	0.00	0.00	0	0
lard v Ca	Underground Infiltration System	I-4				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	0.00	0.00	0	0
	Dry swale	0-1	0.90	0.47	627	1327
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
S	Pocket Pond (p-5)	P-5				
SMPs	Surface Sand filter (F-1)	F-1				
	Underground Sand filter (F-2)	F-2				
Standard	Perimeter Sand Filter (F-3)	F-3				
Sta	Organic Filter (F-4	F-4				
	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3 W-4				
	Pocket Wetland (W-4) Wet Swale (O-2)	0-2				
			0.00	0.00	0	
	Totals by Area Reduction Totals by Volume Reduction		0.00	0.00	0	-
			0.90	0.47	627	1327
	Totals by Standard SMP w/RRV				027	
—	Totals by Standard SMP		0.00	0.00	627	0
	otals (Area + Volume + all SMPs)		0.90	0.47	627	1,327
	Impervious Cover V	okay				

Minimum RRv

Enter the Soils Da	Enter the Soils Data for the site				
Soil Group	Acres	S			
А		55%			
В		40%			
С		30%			
D	100.00	20%			
Total Area	100				
Calculate the Min	imum RRv				
S =	0.20				
Impervious =	0.47	acre			
Precipitation	1.15	in			
Rv	0.95				
Minimum RRv	373	ft3			
	0.01	af			

NOI QUESTIONS

#	NOI Question Reported				
		cf	af		
28	Total Water Quality Volume (WQv) Required	1954	0.045		
30	Total RRV Provided	627	0.014		
31	Is RRv Provided ≥WQv Required?	No			
32	Minimum RRv	373	0.009		
32a	Is RRv Provided ≥ Minimum RRv Required?	Yes			
33a	Total WQv Treated	1327	0.030		
34	Sum of Volume Reduced & Treated	1954	0.045		
34	Sum of Volume Reduced and Treated	1954	0.045		
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes			

	Apply Peak Flow Attenuation						
36	Channel Protection	Срv					
37	Overbank	Qp					
37	Extreme Flood Control	Qf					
	Are Quantity Control requirements met?						

Dry Swale Worksheet

Design Point:	6A]						
	Enter	Site Data For	Drainage Area	a to be 1	Freated by	Practice		
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description	
1	0.90	0.47	0.52	0.52	1953.67	1.15	Dry Swale	
Enter Imperviou by Disconnectio	n of Rooftops	0.00	52%	0.52	1,954	< <wqv ac<br="" after="">Disconnected R</wqv>	ooftops	
		nent Provided			I	Pretreatment T	•	
Pretrea	atment (10% of		195	ft ³		Plunge Po	l	
		Calculat	e Available St	orage C	apacity			
Bottom Width	8	ft	-				ht feet to avoid less than two feet	
Side Slope (X:1)	4	Okay	Channels sha than 3:1) for absolute max	most co	nditions. 2	moderate side :1 is the	slopes (flatter	
Longitudinal Slope	1%	Okay	Maximum loi	ngitudin	al slope sho	all be 4%		
Flow Depth	1.5	ft		a maxin	num depth	e foot at the mia of 18" at the en y		
Top Width	20	ft			•	Ťw		
Area	21.00	sf			-			
Minimum Length	84	ft				d		
Actual Length	140	ft				B _w		
End Point Depth check	1.50	Okay	A maximum of the storage of the		18" at the	end point of the	e channel (for	
Storage Capacity	3,135	ft ³						
Soil Group (HSG	i)	•	D					
			Runoff Redu	uction				
Is the Dry Swale practice?	e contributing flo	ow to another		Select	Practice			
RRv	627	ft ³	Runnoff Reduction equals 40% in HSG A and B and 20% in HSG and D up to the WQv					
Volume Treated	1,327	ft ³	This is the difference between the WQv calculated and the runoff reduction achieved in the swale					
Volume Directed	0	ft ³	This volume is directed another practice					
Volume √	Okay		Check to be sure that channel is long enough to store WQv					

Design Point:

6A

Version 1.8Last Upda**Tet**al 10/2015 lity Volume Calculation WQv(acre-feet) = [(P)(Rv)(A)] /12

Is this project subject to Chapter 10 of the NYS Design Manual (i.e. WQv is equal to post-										
development 1 y	development 1 year runoff volume)? No									
Design Point:	6B	6B Manually enter P, Total Area and Impervious Cover.								
P=	1.15	inch	wanuuny en	er P, Totul Are	a and imperv	nous cover.				
		Breakdow	n of Subcatchme	nts						
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Impervious Rv .							
1	3.23	1.52	47%	0.47	6,385	Bioretention				
2										
3										
4										
5										
6										
7										
8										
9										
10										
Subtotal (1-30)	3.23	1.52	47%	0.47	6,385	Subtotal 1				
Total	3.23	1.52	47%	0.47	6,385	Initial WQv				

Identify Runoff Reduction Techniques By Area							
Technique	Total Contributing Area Contributing Impervious Area		Notes				
	(Acre)	(Acre)					
Conservation of Natural Areas	0.00	0.00	minimum 10,000 sf				
Riparian Buffers	0.00	0.00	maximum contributing length 75 feet to 150 feet				
Filter Strips	0.00	0.00					
Tree Planting	0.00	0.00	<i>Up to 100 sf directly connected impervious area may be subtracted per tree</i>				
Total	0.00	0.00					
			-				

Recalculate WQv after application of Area Reduction Techniques								
	Total Area (Acres)Impervious Area (Acres)Percent Impervious %		Total Area Impervious Area (Acres) (Acres) Impervious Co		rvious Area (Acres) Impervious Coefficient		WQv (ft ³)	
"< <initial td="" wqv"<=""><td>3.23</td><td>1.52</td><td>47%</td><td>0.47</td><td>6,385</td></initial>	3.23	1.52	47%	0.47	6,385			
Subtract Area	0.00	0.00						
WQv adjusted after Area Reductions	3.23	1.52	47%	0.47	6,385			
Disconnection of Rooftops		0.00						
Adjusted WQv after Area Reduction and Rooftop Disconnect	3.23	1.52	47%	0.47	6,385			
WQv reduced by Area Reduction techniques					0			

	Runoff Reduction V	olume a	nd Treated vo	olumes		
	Runoff Reduction Techiques/Standard SMPs		Total Contributing Area	Total Contributing Impervious Area	WQv Reduced (RRv)	WQv Treated
			(acres)	(acres)	cf	cf
	Conservation of Natural Areas	RR-1	0.00	0.00		
Area/Volume Reduction	Sheetflow to Riparian Buffers/Filter Strips	RR-2	0.00	0.00		
duc	Tree Planting/Tree Pit	RR-3	0.00	0.00		
Red	Disconnection of Rooftop Runoff	RR-4		0.00		
me	Vegetated Swale	RR-5	0.00	0.00	0	
olu	Rain Garden	RR-6	0.00	0.00	0	
a/V	Stormwater Planter	RR-7	0.00	0.00	0	
Are	Rain Barrel/Cistern	RR-8	0.00	0.00	0	
	Porous Pavement	RR-9	0.00	0.00	0	
	Green Roof (Intensive & Extensive)	RR-10	0.00	0.00	0	
	Infiltration Trench	I-1	0.00	0.00	0	0
1Ps city	Infiltration Basin	I-2	0.00	0.00	0	0
l SN	Dry Well	I-3	0.00	0.00	0	0
lard v Ca	Underground Infiltration System	1-4				
Standard SMPs w/RRv Capacity	Bioretention & Infiltration Bioretention	F-5	3.23	1.52	1440	4945
	Dry swale	0-1	0.00	0.00	0	0
	Micropool Extended Detention (P-1)	P-1				
	Wet Pond (P-2)	P-2				
	Wet Extended Detention (P-3)	P-3				
	Multiple Pond system (P-4)	P-4				
S	Pocket Pond (p-5)	P-5				
SMPs	Surface Sand filter (F-1)	F-1				
	Underground Sand filter (F-2)	F-2				
Standard	Perimeter Sand Filter (F-3)	F-3				
Star	Organic Filter (F-4	F-4				
	Shallow Wetland (W-1)	W-1				
	Extended Detention Wetland (W-2	W-2				
	Pond/Wetland System (W-3)	W-3				
	Pocket Wetland (W-4)	W-4				
	Wet Swale (O-2)	0-2 →	0.00	0.05	-	
	Totals by Area Reduction		0.00	0.00	0	
	Totals by Volume Reduction		0.00	0.00	0	
	Totals by Standard SMP w/RRV	\rightarrow	3.23	1.52	1440	4945
	Totals by Standard SMP	\rightarrow	0.00	0.00		0
T	otals (Area + Volume + all SMPs)	\rightarrow	3.23	1.52	1,440	4,945
	Impervious Cover V	okay				

Minimum RRv

Enter the Soils Data for the site							
Soil Group	Acres	S					
А		55%					
В		40%					
С		30%					
D	100.00	20%					
Total Area	100						
Calculate the Min	imum RRv						
S =	0.20						
Impervious =	1.52	acre					
Precipitation	1.15	in					
Rv	0.95						
Minimum RRv	1,206	ft3					
	0.03	af					

NOI QUESTIONS

#	NOI Question	Reporte	d Value				
		cf	af				
28	Total Water Quality Volume (WQv) Required	6385	0.147				
30	Total RRV Provided	1440 0.03					
31	Is RRv Provided ≥WQv Required?	N	ο				
32	Minimum RRv	1206	0.028				
32a	Is RRv Provided ≥ Minimum RRv Required?	Ye	s				
33a	Total WQv Treated	4945	0.114				
34	Sum of Volume Reduced & Treated	6385	0.147				
34	Sum of Volume Reduced and Treated	6385	0.147				
35	Is Sum RRv Provided and WQv Provided ≥WQv Required?	Yes					

	Apply Peak Flow Attenuation										
36	Channel Protection	Срv									
37	Overbank	Qp									
37	Extreme Flood Control	Qf									
	Are Quantity Control requirements met?										

Bioretention Worksheet

(For use on HSG C or D Soils with underdrains) Af=WQv*(df)/[k*(hf+df)(tf)]

k

- Af Required Surface Area (ft2)
- WQv Water Quality Volume (ft3)

- df Depth of the Soil Medium (feet)
- hf Average height of water above the planter bed
- Volume Through the Filter Media (days) tf

The hydraulic conductivity [ft/day], can be varied depending on the properties of the soil media. Some reported conductivity values are: Sand - 3.5 ft/day (City of Austin 1988); Peat - 2.0 ft/day (Galli 1990); Leaf Compost - 8.7 ft/day (Claytor and Schueler, 1996); Bioretention Soil (0.5 ft/day (Claytor &

Design Point:	6B										
	Enter	Site Data For	Drainage Are	a to be 1	Freated by	Practice					
Catchment Number	Total Area (Acres)	Impervious Area (Acres)	Percent Impervious %	Rv	WQv (ft³)	Precipitation (in)	Description				
1	3.23	1.52	0.47	0.47	6384.90	1.15	Bioretention				
Enter Impervious by Disconnectior		0.00	47%	0.47	6,385	< <wqv ac<br="" after="">Disconnected R</wqv>					
Enter the portio routed to this pr		at is not redu	ced for all pra	ctices		ft ³					
			Soil Inform	ation							
Soil Group		D									
Soil Infiltration F	Rate	0.10	in/hour	Okay							
Using Underdrai	ns?	Yes	Okay								
		Calcula	te the Minim	um Filte	er Area						
				V	alue	Units	Notes				
	WQv			6	,385	ft ³					
Enter	Depth of Soil M	edia	df		2.5	ft	2.5-4 ft				
Enter H	ydraulic Condu	ctivity	k		0.5	ft/day					
Enter Ave	rage Height of I	Ponding	hf		0.5	ft	6 inches max.				
E	nter Filter Time		tf		2	days					
Req	uired Filter Are	ea	Af	5321 ft^2							
		Determi	ne Actual Bio	-Retenti	on Area						
Filter Width		30	ft								
Filter Length		100	ft								
Filter Area		3000	ft ²								
Actual Volume P	Provided	3600	ft ³								
		Dete	ermine Runof	f Reduct	tion	_					
Is the Bioretenti another practice	-	flow to		Select	Practice						
RRv		1,440									
RRv applied		1,440	ft ³		10% of the ver is less.	storage provid	ed or WQv				
Volume Treated		4,945	ft ³	This is t the prac	•	of the WQv tha	t is not reduced in				
Volume Directed	k	0 ft^3 This volume is directed another practice									
Sizing √											

(For use on HSG C or D Soils with underdrains)

APPENDIX F

NOI

NOTICE OF INTENT

New York State Department of Environmental Conservation

Division of Water

625 Broadway, 4th Floor

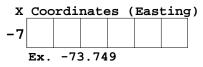
Albany, New York 12233-3505

Stormwater Discharges Associated with <u>Construction Activity</u> Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-20-001 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANT-

RETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM


Owner/Operator (Company Name/Private Owner Name/Municipality Name) Owner/Operator Contact Person Last Name (NOT CONSULTANT)									
Owner/Operator Contact Person Last Name (NOT CONSULTANT)									
Owner/Operator Contact Person Last Name (NOT CONSULTANT)									
Owner/Operator Contact Person First Name									
Owner/Operator Mailing Address									
City									
State Zip									
Phone (Owner/Operator) Fax (Owner/Operator) - -									
Email (Owner/Operator)									
FED TAX ID (not required for individuals)									

Projec	t Site	e Info	orma	tion								
Project/Site Name												
						<u> </u>	1 1					
Street Address (NOT P.O. BOX)	<u> </u>			- 1 1			1 1					1
Side of Street												
○ North ○ South ○ East ○ West												
City/Town/Village (THAT ISSUES BUILDING	G PERM	IIT)										
State Zip Count	v								DEC	Regi	on	
											.011	
					_							
Name of Nearest Cross Street												
Distance to Nearest Cross Street (Feet)			Proj								
				○ No :	rtn	\bigcirc S	outh	0	Eas	τ	west	5
Tax Map Numbers Section-Block-Parcel				Tax	Мар	Numb	ers					
Section-Block-Parcel					1							

1. Provide the Geographic Coordinates for the project site. To do this, go to the NYSDEC Stormwater Interactive Map on the DEC website at:

https://gisservices.dec.ny.gov/gis/stormwater/

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located the centroid of your project site, go to the bottom right hand corner of the map for the X, Y coordinates. Enter the coordinates into the boxes below. For problems with the interactive map use the help function.

ΥС	loor	dina	(N	(Northing)							
	40	650									
Ex. 42.652											

2. What is the nature of this construction project?	
O New Construction	
\bigcirc Redevelopment with increase in impervious area	
\bigcirc Redevelopment with no increase in impervious area	

3.	Select the predominant land use for both p SELECT ONLY ONE CHOICE FOR EACH	re and post development conditions.								
	Pre-Development Existing Land Use	Post-Development Future Land Use								
	⊖ FOREST	○ SINGLE FAMILY HOME <u>Number_</u> of Lots								
	\bigcirc PASTURE/OPEN LAND	○ SINGLE FAMILY SUBDIVISION								
	○ CULTIVATED LAND	○ TOWN HOME RESIDENTIAL								
	○ SINGLE FAMILY HOME	○ MULTIFAMILY RESIDENTIAL								
	○ SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL								
	\bigcirc TOWN HOME RESIDENTIAL	○ INDUSTRIAL								
	○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL								
	○ INSTITUTIONAL/SCHOOL	○ MUNICIPAL								
	\bigcirc INDUSTRIAL	○ ROAD/HIGHWAY								
	○ COMMERCIAL	○ RECREATIONAL/SPORTS FIELD								
	○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL								
	○ RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)								
	○ BIKE PATH/TRAIL	○ PARKING LOT								
	\bigcirc LINEAR UTILITY	○ CLEARING/GRADING ONLY								
	○ PARKING LOT	\bigcirc DEMOLITION, NO REDEVELOPMENT								
	O OTHER	\bigcirc WELL DRILLING ACTIVITY *(Oil, Gas, etc.)								

*Note: for gas well drilling, non-high volume hydraulic fractured wells only

4. In accordance with the larger common plan of enter the total project site area; the total existing impervious area to be disturbed (for activities); and the future impervious area disturbed area. (Round to the nearest tenth of	area to be disturbed; r redevelopment constructed within the
	Future Impervious Area Within Disturbed Area
5. Do you plan to disturb more than 5 acres of	soil at any one time? O Yes O No
6. Indicate the percentage of each Hydrologic S	oil Group(HSG) at the site.
A B C ● ● ● ●	D %
7. Is this a phased project?	\bigcirc Yes \bigcirc No
8. Enter the planned start and end dates of the disturbance activities.	End Date

8600089821

/	Identify discharge		rest	surfa	ace	wat	erbc	ody(ies) t	0 1	vhio	ch	cor	nst:	ruc	ti	on	si	te	ru	nof	f١	wil	1		
Name																							1				_
9a.	Type (of water	body	ident	tifi	.ed :	in Q	ues	tio	n 9'	?																
0	Wetland	/ State	Juri	sdict	cion	. On	Sit	e (i	Ans	wer	9b)															
0	Wetland	/ State	Juri	sdict	cion	. Off	E Si	te																			
0	Wetland	/ Federa	al Ju	risdi	lcti	on (On S	ite	(A1	nswe	er	9b)															
0	Wetland	/ Federa	al Ju	risdi	lcti	on (Dff	Site	e																		
0	Stream /	Creek (On Si	te																							
0	Stream /	Creek (off s	lite																							
0	River Or	. Site																									
0	River Of	f Site								9	b.	F	Iow	Wa	is t	the	W	etl	.an	d i	der	nti	fie	ed?			
0	Lake On	Site										O I	Reg	rula	ato	ry	Ma	р									
0	Lake Off	Site										O I	Del	ine	eat	ed	by	Co	ons	ult	an	t					
0	Other Ty	pe On Si	ite									O I	Del	ine	eat	ed	by	Aı	cmy	Cc	orp	s c	of 3	Eng	ine	eer	s
0	Other Ty	pe Off :	Site									\circ	Oth	ler	(i	der	ıti	fy)							_	
																										_	
10.		ne surfa										bee	en	ide	ent	ifi	ed	as	s a		C) Ye	28	0	No		
	303(d) segmen	tin	Appei	ndix	ςΕά	of G	P-0	-20	-00	1?																
11.		is proje					e of	th	e W	ate:	rsł	neds	зi	der	nti:	fie	d	in				\					
	Append	dix C of	GP-()-20-0	001?) Ye	28	0	No		
10	Ta th	n nroto-	+ 1		4 m	076	of	+hc		tor	ah a	4															
12.	areas	e projec associa										eu									C) Ye	s	0	No		
	waters If no	₃? , skip q	uesti	ion 1	3.																						

13.	Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey? If Yes, what is the acreage to be disturbed?	⊖ Yes	O No
	•		

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent O Yes O No area?

•	6403089820	

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?														
16.	What is the name of the municipality/entity that owns the separate storm sewer system?														
17.	Does any runoff from the site enter a sewer classified \bigcirc Yes \bigcirc No \bigcirc Unknown as a Combined Sewer?														
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? \bigcirc Yes \bigcirc No														
19.	Is this property owned by a state authority, state agency, O Yes O No federal government or local government?														
20.	Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup O Yes O No Agreement, etc.)														
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS O Yes O No Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?														
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and O Yes O No Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.														
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS O Yes O No Stormwater Management Design Manual?														

24	
, 71	
0251089825 24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by: ○ Professional Engineer (P.E.) ○ Soil and Water Conservation District (SWCD) ○ Registered Landscape Architect (R.L.A) ○ Certified Professional in Erosion and Sediment Control (CPESC) ○ Owner/Operator ○ Other SWPPP Preparer ○ Contact Name (Last, Space, First)	
SWPI	PP Preparer
Cont	act Name (Last, Space, First)
Mail	ing Address
City	,
Stat	
Phor	
Emai	
ĻĻ	

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First Name	MI
Last Name	
Signature	 7
	Date

25.	•		as a ract										ce :	scl	heo	du	ıle	fo	r	the	p.	lanı	ne	d	ma	ana	age	eme	nt	;			С) Ye	s	С) Nc	>
26.			elec nplo:	ye	d c	on	th	er	pro	oje	ct	S	ite	:	seo	di	.mer	ıt	CC	ontr	ol													-				
			-	.e	шр		ar	Y	ы	LIL		u.	ral	-								<u>v</u>	eç	Je	LC	ac	ΤV	re	M	ea	s	IT 6	22	5				
			⊖ Ch	ec	k i	Dan	ıs														С	Br	us	sh	M	at	ti	ng										
			⊖ Cc	ns	str	uct	ic	n	Rc	ad	Sta	ab	ili	za	ti	0	n				С	Du	ne	•	St	ab	il	iza	it:	ioı	n							
			0 Du	st	C C	ont	rc	1													С	Gr	as	sse	ed	W	at	erw	va	Y								
			⊖ Ea	rt	h	Dik	ce														С	Mu	lc	:h:	in	g												
			⊖ Le	ve	1	Spr	ea	de	r												С	Pr	ot	e	ct:	in	g	Veg	je	tat	ti	on						
			⊖ Р €	ri	me	ter	: I	lik	e/	'Swa	ale										С	Re	cr	ea	at:	io	n	Are	ea	II	np	rov	ze	emen	t			
			⊖ Pi	pe	e S	lor	e	Dr	ai	n											С	Se	eð	liı	ng													
			() PC	rt	ab	le	Se	di	me	ent	Та	nk	:								С) So	dd	liı	ng													
			⊖ Rc	cl	D	am															С) St	ra	w,	/Н	ay	в	ale	e 1	Dil	ce							
			⊖ Se	di	me	nt	Ba	si	n												С) St	re	aı	mb	an	k	Prc	ote	ect	ti	on						
			⊖ Se	d	me	nt	Tr	ap	s												С	Те	mŗ		ra	ry	S	wal	le									
			⊖ si	1 t	F	enc	e														С	То	ps	30	i 1	in	g											
			0 st	ał	i l	ize	ed	Co	ns	stru	ict:	ic	n E	Int	ra	in	ce				С	Ve	ge	eta	at	in	g	Wat	e	rwa	aya	s						
			O St									ot	ect	ic	n							P	er	rm	ar	ne	nt	S	t:	ru	ct	cur	ra	<u>al</u>				
	O Straw/Hay Bale Dike O Temporary Access Waterway Crossing														С	De	br	:i:	s 1	Ва	si	n																
						_							_					g			С	Di	ve	er	si	on	L											
			○ Te ○ Te			_					111	L	тле	1.5	i T C	211					С	Gr	aċ	le	S	ta	bi	liz	a	tid	on	st	:r	uct	ur	e		
			0 Ie 0 Tu			_															С	La	nd	10	Gra	ad	in	g										
			0 IU			_		uL	La												С	Li	ne	ed	W	at	er	way	,	(R	ocl	k)						
			U Wa		÷Г.	Dai	. 8														С	Pa	ve	ed	C	ha	nn	el	()	Coi	nci	ret	:e	e)				
Biotechnical													С	Pa	ve	ed	F	lu	me																			
										_											С	Re	ta	ii	ni	ng	W	all	L									
			ОВ:					ınç	3												С	Ri	pr	a	p	sl	op	еF	Pro	ote	ect	tic	on	L				
			() Wa	at	tli	.ng																Ro																
○ Stream																																						
<u>(</u>)th	her			1			1			<u>г</u> т		1 1				_				-											1	-		_	-	-	1

Post-construction Stormwater Management Practice (SMP) Requirements

<u>Important</u>: Completion of Questions 27-39 is not required if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - \bigcirc Preservation of Undisturbed Areas
 - Preservation of Buffers
 - O Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - Roadway Reduction
 - \bigcirc Sidewalk Reduction
 - Driveway Reduction
 - Cul-de-sac Reduction
 - Building Footprint Reduction
 - Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the WQv Required, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Tota	L WQv	Re	qui	lre	đ
					acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

7738089822

Table 1	-
---------	---

Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

O Conservation of Natural Areas (RR-1) and/or O Sheetflow to Riparian Buffers/Filters Strips (RR-2) and/or O Tree Planting/Tree Pit (RR-3) and/or O Tree Planting/Tree Pit (RR-3) and/or O Tree Planting/Tree Pit (RR-3) and/or O Disconnection of Rooftop Runoff (RR-4) and/or Re Techniques (Volume Reduction) O Vegetated Swale (RR-5) Rain Garden (RR-6) Stormwater Planter (RR-7) Rain Barrel/Cistern (RR-8) O Forous Pavement (RR-9) Green Roof (RR-10) Infiltration Trench (I-1) Dry Well (I-3)		Total Contributing		Total (
Sheetflow to Riparian Buffers/Filters Strips (RR-2) . and/or Tree Planting/Tree Pit (RR-3) . and/or Disconnection of Rooftop Runoff (RR-4) . and/or RR Techniques (Volume Reduction) . and/or Vegetated Swale (RR-5) . . Rain Garden (RR-6) . . Stormwater Planter (RR-7) . . Rain Barrel/Cistern (RR-8) . . O Forous Pavement (RR-9) . . Green Roof (RR-10) . . Standard SMPs with Rev Capacity . . Infiltration Trench (I-1) . . Dry Well (I-3) . . Dry Well (I-3) . . Dry Well (I-3) . . Wet Fond (P-5) . . O Micropool Extended Detention (P-1) . . Wet Fond (P-2) . . . Multiple Pond System (P-4) . . . Surface Sand Filter (F-2) . . . Ounderground Sand Filter (F-2) . . <th>RR Techniques (Area Reduction)</th> <th>Area (acres)</th> <th>Im</th> <th>perviou</th> <th>is .</th> <th>Are</th> <th>a(acres)</th>	RR Techniques (Area Reduction)	Area (acres)	Im	perviou	is .	Are	a(acres)
Buffers/Filters Strips (RR-2) and/or - O Tree Planting/Tree Pit (RR-3) and/or - O Disconnection of Rooftop Runoff (RR-4) and/or - Paisconnection of Rooftop Runoff (RR-4) and/or - Rain Garden (RR-6) and/or - Rain Garden (RR-6) - - Stormwater Planter (RR-7) - - O Porous Pavement (RR-9) - - Green Roof (RR-10) - - Standard SMPs with RRv Capacity - - Infiltration Trench (I-1) - - Dry Well (I-3) - - Underground Infiltration System (I-4) - - Dry Wale (0-1) - - - Standard SMPs - - - Mucropool Extended Detention (P-1) - - - Wet Pond (P-2) - - - - Wat Extended Detention (P-3) - - - - Wat Pond (P-5) - - - - - Duderground Sand Filter (F-1) <t< td=""><td></td><td></td><td>and/or</td><td></td><td></td><td>•</td><td></td></t<>			and/or			•	
Disconnection of Rooftop Runoff (RR-4)	O Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or		,	•	
RR Techniques (Volume Reduction) Vegetated Swale (RR-5) Rain Garden (RR-6) Stormwater Planter (RR-7) Rain Barrel/Cistern (RR-8) Porous Pavement (RR-9) Green Roof (RR-10) Standard SMPs with RRV Capacity Infiltration Trench (I-1) Dry Well (I-3) Underground Infiltration System (I-4) Dry Swale (0-1) Standard SMPs Micropool Extended Detention (P-1) Wet Extended Detention (P-3) Wet Extended Detention (P-4) Watifier (F-1) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (Wet-3)	\bigcirc Tree Planting/Tree Pit (RR-3)	•	and/or		'	-	
O Vegetated Swale (RR-5)	\bigcirc Disconnection of Rooftop Runoff (RR-4)	••	and/or			•	
Rain Garden (RR-6) . Stormwater Planter (RR-7) . Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Standard SMPs with RRV Capacity . Infiltration Trench (I-1) . Dry Well (I-3) . Underground Infiltration System (I-4) . Dry Swale (O-1) . Standard SMPS . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .	RR Techniques (Volume Reduction)						
Stormwater Planter (RR-7) . Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Infiltration Trench (I-1) . Infiltration Basin (I-2) . Dry Well (I-3) . Underground Infiltration System (I-4) . Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Organic Filter (F-4) . Shallow Wetland (W-1) . Prod/Wetland System (W-3) .	\bigcirc Vegetated Swale (RR-5) \cdots	•••••			_ ·	•	
Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Infiltration Trench (I-1) . Infiltration Basin (I-2) . Dry Well (I-3) . Underground Infiltration System (I-4) . Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wattiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Pond/Wetland System (W-3) .	\bigcirc Rain Garden (RR-6)		•••••		'	•	
O Porous Pavement (RR-9)	\bigcirc Stormwater Planter (RR-7)	•••••••••••••••••	• • • • • •		'	•	
Green Roof (RR-10)	\bigcirc Rain Barrel/Cistern (RR-8)		• • • • • •		'	•	
Standard SMPs with RRV Capacity O Infiltration Trench (I-1) O Infiltration Basin (I-2) O Dry Well (I-3) O Underground Infiltration System (I-4) O Bioretention (F-5) O Dry Swale (0-1) Standard SMPS Micropool Extended Detention (P-1) Wet Pond (P-2) Wet Extended Detention (P-3) Wultiple Pond System (P-4) Surface Sand Filter (F-1) O Underground Sand Filter (F-2) O Perimeter Sand Filter (F-3) Organic Filter (F-4) O Standard Wetland (W-1) O Pond/Wetland System (W-3)	\bigcirc Porous Pavement (RR-9)	••••	• • • • • •			·L	
O Infiltration Trench (I-1) . O Infiltration Basin (I-2) . O Dry Well (I-3) . O Underground Infiltration System (I-4) . O Bioretention (F-5) . O Dry Swale (O-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . O Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .	\bigcirc Green Roof (RR-10)						
Infiltration Basin (I-2)	Standard SMPs with RRv Capacity						
Infiltration Basin (I-2)	\bigcirc Infiltration Trench (I-1) ••••••••••••••••••••••••••••••••••••					•	
Ory Well (I-3)							
Underground Infiltration System (I-4)							
Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Organic Filter (F-2) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
Ory Swale (0-1) . Standard SMPs Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .						•	
Standard SMPs Micropool Extended Detention (P-1) Wet Pond (P-2) Wet Extended Detention (P-3) Wat Extended Detention (P-3) Multiple Pond System (P-4) Pocket Pond (P-5) Surface Sand Filter (F-1) Underground Sand Filter (F-2) Perimeter Sand Filter (F-3) Organic Filter (F-4) Shallow Wetland (W-1) Extended Detention Wetland (W-2) Pond/Wetland System (W-3)	\bigcirc Dry Swale (0-1)					•	
Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .	-						
Wet Pond (P-2) • Wet Extended Detention (P-3) • Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	Standard SMPs						
Wet Extended Detention (P-3) • Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Micropool Extended Detention (P-1)						
Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Wet Pond (P-2)	••••••	••••			•	
Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Wet Extended Detention (P-3)					•	
Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .	\bigcirc Pocket Pond (P-5) ·····		••••			•	
Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
OPerimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •					,		
Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .						•	
O Shallow Wetland (W-1) • O Extended Detention Wetland (W-2) • O Pond/Wetland System (W-3) •	\bigcirc Organic Filter (F-4)	•••••	••••				
○ Extended Detention Wetland (W-2) • • ○ Pond/Wetland System (W-3) • •						•	
○ Pond/Wetland System (W-3)	\bigcirc Extended Detention Wetland (W-2)					•	
						•	
					_],	•	
○ Wet Swale (0-2)						•	

0762089822									_
	Table 2 -	Alternativ (DO NOT IN USED FOR I	NCLUDE PF			ſĠ			
Alternative SMP							al Contr vious Ar		
	·	• • • • • • • • • • •	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • •	··			_
O Other Provide the name proprietary pract					(i.e.	•• 🗌	• [_		
Name									
	ent projects which ons 28, 29, 33 and ed and total WQv	d 33a to p	rovide SI	MPs us	ed, tot				
	ne Total RRv prov MPs with RRv capa						me Reduo	ction)	and
Total RRv	provided	et							
total WQv r If Yes, go	al RRv provided (required (#28). to question 36.	#30) great	er than	or equ	al to	the	0	Yes	O No
	e Minimum RRv req Rv Required = (P)				c)]				
Minimum RR	v Required	et							
Minimum RRV If Yes, go <u>Note</u> : Us specific 100% of specific 100% of SWPPP. If No, sizi	al RRv provided (r Required (#32)? to question 33. se the space prove site limitation WQv required (#2 c site limitation the WQv required .ng criteria has SWPPP preparer m	rided in qu s and just 8). A <u>det</u> s and just (#28) mus not been m	estion # ificatio <u>ailed</u> ev ificatio t also b et, so N	39 to n for aluati n for e incl OI can	summar not rea on of not rea uded in not b a	<u>ize</u> the ducing the ducing n the e	e	Yes	O No

1766089827

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total <u>impervious</u> area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29. WQv Provided acre-feet Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual) Provide the sum of the Total RRv provided (#30) and 34. the WQv provided (#33a). Is the sum of the RRv provided (#30) and the WQv provided 35. (#33a) greater than or equal to the total WQv required (#28)? 🔾 Yes 🔷 No If Yes, go to question 36. If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria. Provide the total Channel Protection Storage Volume (CPv) required and 36. provided or select waiver (36a), if applicable. CPv Required CPv Provided acre-feet acre-feet 36a. The need to provide channel protection has been waived because: O Site discharges directly to tidal waters or a fifth order or larger stream. \bigcirc Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development	Post-development
Total Extreme Flood Control	Criteria (Qf)
Pre-Development	Post-development
CFS	CFS

37a.	The need to meet the Qp and Qf criteria has been waived because:
	\bigcirc Site discharges directly to tidal waters
	or a fifth order or larger stream.
	\bigcirc Downstream analysis reveals that the Qp and Qf
	controls are not required

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been
O Yes
No developed?

If Yes, Identify the entity responsible for the long term Operation and Maintenance

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required(#28). (See question 32a) This space can also be used for other pertinent project information.

. 4285089826

40.	Identify other DEC permits, existing and new, that are required for this project/facility.
	○ Air Pollution Control
	○ Coastal Erosion
	\bigcirc Hazardous Waste
	○ Long Island Wells
	\bigcirc Mined Land Reclamation
	\bigcirc Solid Waste
	\bigcirc Navigable Waters Protection / Article 15
	○ Water Quality Certificate
	○ Dam Safety
	○ Water Supply
	○ Freshwater Wetlands/Article 24
	\bigcirc Tidal Wetlands
	\bigcirc Wild, Scenic and Recreational Rivers
	\bigcirc Stream Bed or Bank Protection / Article 15
	○ Endangered or Threatened Species(Incidental Take Permit)
	\bigcirc Individual SPDES
	○ SPDES Multi-Sector GP
	0 Other
	O None

41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.	⊖ Yes	O No
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	○Үез	O No
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	⊖ Yes	() No
44.	If this NOI is being submitted for the purpose of continuing or trans coverage under a general permit for stormwater runoff from constructi activities, please indicate the former SPDES number assigned.	-	

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI
Print Last Name	
Owner/Operator Signature	
	Date

APPENDIX G

NOT

New York State Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505 *(NOTE: Submit completed form to address above)* NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity				
Please indicate your permit identification number: NY	R			
I. Owner or Operator Information				
1. Owner/Operator Name:				
2. Street Address:				
3. City/State/Zip:	1			
4. Contact Person:	4a.Telephone:			
4b. Contact Person E-Mail:				
II. Project Site Information				
5. Project/Site Name:				
6. Street Address:				
7. City/Zip:				
8. County:				
III. Reason for Termination				
9a. □ All disturbed areas have achieved final stabilization in accord SWPPP. *Date final stabilization completed (month/year):	ordance with the general permit and			
9b. □ Permit coverage has been transferred to new owner/opera permit identification number: NYR				
9c. □ Other (Explain on Page 2)				
IV. Final Site Information:				
10a. Did this construction activity require the development of a S stormwater management practices? □ yes □ no (If no	SWPPP that includes post-construction , go to question 10f.)			
10b. Have all post-construction stormwater management practic constructed? □ yes □ no (If no, explain on Page 2)				
10c. Identify the entity responsible for long-term operation and m	naintenance of practice(s)?			

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

10d. Has the entity responsible for long-term operation and maintenance been given a copy of the operation and maintenance plan required by the general permit? □ yes □ no

10e. Indicate the method used to ensure long-term operation and maintenance of the post-construction stormwater management practice(s):

□ Post-construction stormwater management practice(s) and any right-of-way(s) needed to maintain practice(s) have been deeded to the municipality.

Executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s).

□ For post-construction stormwater management practices that are privately owned, a mechanism is in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the owner or operator's deed of record.

□ For post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university or hospital), government agency or authority, or public utility; policy and procedures are in place that ensures operation and maintenance of the practice(s) in accordance with the operation and maintenance plan.

10f. Provide the total area of impervious surface (i.e. roof, pavement, concrete, gravel, etc.) constructed within the disturbance area?

(acres)

11. Is this project subject to the requirements of a regulated, traditional land use control MS4? $\hfill\square$ yes $\hfill\square$ no

(If Yes, complete section VI - "MS4 Acceptance" statement

V. Additional Information/Explanation: (Use this section to answer questions 9c. and 10b., if applicable)

VI. MS4 Acceptance - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative (Note: Not required when 9b. is checked -transfer of coverage)

I have determined that it is acceptable for the owner or operator of the construction project identified in question 5 to submit the Notice of Termination at this time.

Printed Name:

Title/Position:

Signature:

Date:

NOTICE OF TERMINATION for Storm Water Discharges Authorized under the SPDES General Permit for Construction Activity - continued

VII. Qualified Inspector Certification - Final Stabilization:
 I hereby certify that all disturbed areas have achieved final stabilization as defined in the current version of the general permit, and that all temporary, structural erosion and sediment control measures have been removed. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.
 Printed Name:

Title/Position:

Signature:

Date:

Date:

VIII. Qualified Inspector Certification - Post-construction Stormwater Management Practice(s):

I hereby certify that all post-construction stormwater management practices have been constructed in conformance with the SWPPP. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Printed Name:

Title/Position:

Signature:

IX. Owner or Operator Certification

I hereby certify that this document was prepared by me or under my direction or supervision. My determination, based upon my inquiry of the person(s) who managed the construction activity, or those persons directly responsible for gathering the information, is that the information provided in this document is true, accurate and complete. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of the referenced permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

Printed Name:

Title/Position:

Signature:

Date:

(NYS DEC Notice of Termination - January 2015)

APPENDIX H

MS4 Authorization Form

NEW YORK STATE OF OPPORTUNITYDepartment of Environmental ConservationNYS Department of Environmental Conservation Division of Water 625 Broadway, 4th Floor Albany, New York 12233-3505				
MS4 Stormwater Pollution Prevention Plan (SWPPP) Acceptance Form				
Construction Activities Seeking Authorization Under SPDES General Permit *(NOTE: Attach Completed Form to Notice Of Intent and Submit to Address Above)				
I. Project Owner/Operator Information				
1. Owner/Operator Name:				
2. Contact Person:				
3. Street Address:				
4. City/State/Zip:				
II. Project Site Information				
5. Project/Site Name:				
6. Street Address:				
7. City/State/Zip:				
III. Stormwater Pollution Prevention Plan (SWPPP) Review and Acceptance Information				
8. SWPPP Reviewed by:				
9. Title/Position:				
10. Date Final SWPPP Reviewed and Accepted:				
IV. Regulated MS4 Information				
11. Name of MS4:				
12. MS4 SPDES Permit Identification Number: NYR20A				
13. Contact Person:				
14. Street Address:				
15. City/State/Zip:				
16. Telephone Number:				

MS4 SWPPP Acceptance Form - continued

V. Certification Statement - MS4 Official (principal executive officer or ranking elected official) or Duly Authorized Representative

I hereby certify that the final Stormwater Pollution Prevention Plan (SWPPP) for the construction project identified in question 5 has been reviewed and meets the substantive requirements in the SPDES General Permit For Stormwater Discharges from Municipal Separate Storm Sewer Systems (MS4s). Note: The MS4, through the acceptance of the SWPPP, assumes no responsibility for the accuracy and adequacy of the design included in the SWPPP. In addition, review and acceptance of the SWPPP by the MS4 does not relieve the owner/operator or their SWPPP preparer of responsibility or liability for errors or omissions in the plan.

Printed Name:

Title/Position:

Signature:

Date:

VI. Additional Information

(NYS DEC - MS4 SWPPP Acceptance Form - January 2015)

APPENDIX I

GP-0-20-001

Department of Environmental Conservation

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES

From

CONSTRUCTION ACTIVITY

Permit No. GP- 0-20-001

Issued Pursuant to Article 17, Titles 7, 8 and Article 70

of the Environmental Conservation Law

Effective Date: January 29, 2020

Expiration Date: January 28, 2025

John J. Ferguson

Chief Permit Administrator

Authorized Signature

1-23-20

Date

Address: NYS DEC Division of Environmental Permits 625 Broadway, 4th Floor Albany, N.Y. 12233-1750

PREFACE

Pursuant to Section 402 of the Clean Water Act ("CWA"), stormwater *discharges* from certain *construction activities* are unlawful unless they are authorized by a *National Pollutant Discharge Elimination System ("NPDES")* permit or by a state permit program. New York administers the approved State Pollutant Discharge Elimination System (SPDES) program with permits issued in accordance with the New York State Environmental Conservation Law (ECL) Article 17, Titles 7, 8 and Article 70.

An owner or operator of a construction activity that is eligible for coverage under this permit must obtain coverage prior to the *commencement of construction activity*. Activities that fit the definition of "*construction activity*", as defined under 40 CFR 122.26(b)(14)(x), (15)(i), and (15)(ii), constitute construction of a *point source* and therefore, pursuant to ECL section 17-0505 and 17-0701, the *owner or operator* must have coverage under a SPDES permit prior to *commencing construction activity*. The *owner or operator* cannot wait until there is an actual *discharge* from the *construction site* to obtain permit coverage.

*Note: The italicized words/phrases within this permit are defined in Appendix A.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SPDES GENERAL PERMIT FOR STORMWATER DISCHARGES FROM CONSTRUCTION ACTIVITIES

Table of Contents

PERMIT COVERAGE AND LIMITATIONS	1
Permit Application	1
Effluent Limitations Applicable to Discharges from Construction Activities	1
Post-construction Stormwater Management Practice Requirements	
Maintaining Water Quality	
Eligibility Under This General Permit	9
Activities Which Are Ineligible for Coverage Under This General Permit	9
PERMIT COVERAGE	12
How to Obtain Coverage	12
Notice of Intent (NOI) Submittal	13
Permit Authorization	
General Requirements For Owners or Operators With Permit Coverage	15
Permit Coverage for Discharges Authorized Under GP-0-15-002	17
Change of Owner or Operator	
General SWPPP Requirements	18
Required SWPPP Contents	
Contractor Maintenance Inspection Requirements	
Termination of Permit Coverage	29
•	
•	
, _,	33
Other Information	
Property Rights	
Severability	35
	Permit Application

K.	Requirement to Obtain Coverage Under an Alternative Permit	35
L.	Proper Operation and Maintenance	36
М.	Inspection and Entry	36
N.	Permit Actions	37
О.	Definitions	37
Ρ.	Re-Opener Clause	37
Q.	Penalties for Falsification of Forms and Reports	37
R.	Other Permits	38
APPEN	DIX A – Acronyms and Definitions	39
Acronyms		39
Definitions		40
APPEN	DIX B – Required SWPPP Components by Project Type	48
Table	e 1	48
Table	9 2	50
APPEN	DIX C – Watersheds Requiring Enhanced Phosphorus Removal	52
APPENDIX D – Watersheds with Lower Disturbance Threshold		58
APPEN	DIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)	59
APPEN	DIX F – List of NYS DEC Regional Offices	65

Part 1. PERMIT COVERAGE AND LIMITATIONS

A. Permit Application

This permit authorizes stormwater *discharges* to *surface waters of the State* from the following *construction activities* identified within 40 CFR Parts 122.26(b)(14)(x), 122.26(b)(15)(i) and 122.26(b)(15)(ii), provided all of the eligibility provisions of this permit are met:

- 1. Construction activities involving soil disturbances of one (1) or more acres; including disturbances of less than one acre that are part of a *larger common plan of development or sale* that will ultimately disturb one or more acres of land; excluding *routine maintenance activity* that is performed to maintain the original line and grade, hydraulic capacity or original purpose of a facility;
- 2. Construction activities involving soil disturbances of less than one (1) acre where the Department has determined that a *SPDES* permit is required for stormwater *discharges* based on the potential for contribution to a violation of a *water quality standard* or for significant contribution of *pollutants* to *surface waters of the State.*
- Construction activities located in the watershed(s) identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.

B. Effluent Limitations Applicable to Discharges from Construction Activities

Discharges authorized by this permit must achieve, at a minimum, the effluent limitations in Part I.B.1. (a) – (f) of this permit. These limitations represent the degree of effluent reduction attainable by the application of best practicable technology currently available.

 Erosion and Sediment Control Requirements - The owner or operator must select, design, install, implement and maintain control measures to minimize the discharge of pollutants and prevent a violation of the water quality standards. The selection, design, installation, implementation, and maintenance of these control measures must meet the non-numeric effluent limitations in Part I.B.1.(a) – (f) of this permit and be in accordance with the New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, using sound engineering judgment. Where control measures are not designed in conformance with the design criteria included in the technical standard, the owner or operator must include in the Stormwater Pollution Prevention Plan ("SWPPP") the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

- a. **Erosion and Sediment Controls.** Design, install and maintain effective erosion and sediment controls to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. At a minimum, such controls must be designed, installed and maintained to:
 - (i) *Minimize* soil erosion through application of runoff control and soil stabilization control measure to *minimize pollutant discharges*;
 - (ii) Control stormwater *discharges*, including both peak flowrates and total stormwater volume, to *minimize* channel and *streambank* erosion and scour in the immediate vicinity of the *discharge* points;
 - (iii) *Minimize* the amount of soil exposed during *construction activity*;
 - (iv) *Minimize* the disturbance of *steep slopes*;
 - (v) *Minimize* sediment *discharges* from the site;
 - (vi) Provide and maintain *natural buffers* around surface waters, direct stormwater to vegetated areas and maximize stormwater infiltration to reduce *pollutant discharges*, unless *infeasible*;
 - (vii) Minimize soil compaction. Minimizing soil compaction is not required where the intended function of a specific area of the site dictates that it be compacted;
 - (viii) Unless *infeasible*, preserve a sufficient amount of topsoil to complete soil restoration and establish a uniform, dense vegetative cover; and
 - (ix) *Minimize* dust. On areas of exposed soil, *minimize* dust through the appropriate application of water or other dust suppression techniques to control the generation of pollutants that could be discharged from the site.
- b. Soil Stabilization. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within fourteen (14) days from the date the current soil disturbance activity ceased. For construction sites that *directly discharge* to one of the 303(d) segments

listed in Appendix E or is located in one of the watersheds listed in Appendix C, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. See Appendix A for definition of *Temporarily Ceased*.

- c. **Dewatering**. *Discharges* from *dewatering* activities, including *discharges* from *dewatering* of trenches and excavations, must be managed by appropriate control measures.
- d. **Pollution Prevention Measures**. Design, install, implement, and maintain effective pollution prevention measures to *minimize* the *discharge* of *pollutants* and prevent a violation of the *water quality standards*. At a minimum, such measures must be designed, installed, implemented and maintained to:
 - (i) Minimize the discharge of pollutants from equipment and vehicle washing, wheel wash water, and other wash waters. This applies to washing operations that use clean water only. Soaps, detergents and solvents cannot be used;
 - (ii) Minimize the exposure of building materials, building products, construction wastes, trash, landscape materials, fertilizers, pesticides, herbicides, detergents, sanitary waste, hazardous and toxic waste, and other materials present on the site to precipitation and to stormwater. Minimization of exposure is not required in cases where the exposure to precipitation and to stormwater will not result in a *discharge* of *pollutants*, or where exposure of a specific material or product poses little risk of stormwater contamination (such as final products and materials intended for outdoor use); and
 - (iii) Prevent the *discharge* of *pollutants* from spills and leaks and implement chemical spill and leak prevention and response procedures.
- e. Prohibited Discharges. The following discharges are prohibited:
 - (i) Wastewater from washout of concrete;
 - (ii) Wastewater from washout and cleanout of stucco, paint, form release oils, curing compounds and other construction materials;

- (iii) Fuels, oils, or other *pollutants* used in vehicle and equipment operation and maintenance;
- (iv) Soaps or solvents used in vehicle and equipment washing; and
- (v) Toxic or hazardous substances from a spill or other release.
- f. Surface Outlets. When discharging from basins and impoundments, the outlets shall be designed, constructed and maintained in such a manner that sediment does not leave the basin or impoundment and that erosion at or below the outlet does not occur.

C. Post-construction Stormwater Management Practice Requirements

- The owner or operator of a construction activity that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must select, design, install, and maintain the practices to meet the *performance criteria* in the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015, using sound engineering judgment. Where post-construction stormwater management practices ("SMPs") are not designed in conformance with the *performance criteria* in the Design Manual, the owner or operator must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.
- 2. The owner or operator of a construction activity that requires post-construction stormwater management practices pursuant to Part III.C. of this permit must design the practices to meet the applicable *sizing criteria* in Part I.C.2.a., b., c. or d. of this permit.

a. Sizing Criteria for New Development

- (i) Runoff Reduction Volume ("RRv"): Reduce the total Water Quality Volume ("WQv") by application of RR techniques and standard SMPs with RRv capacity. The total WQv shall be calculated in accordance with the criteria in Section 4.2 of the Design Manual.
- (ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.a.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP.

For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed impervious areas be less than the Minimum RRv as calculated using the criteria in Section 4.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume ("Cpv"): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site discharges directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria ("Qp"): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria ("Qf"): Requires storage to attenuate the post-development 100-year, 24-hour peak discharge rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site discharges directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

b. *Sizing Criteria* for *New Development* in Enhanced Phosphorus Removal Watershed

Runoff Reduction Volume (RRv): Reduce the total Water Quality
 Volume (WQv) by application of RR techniques and standard SMPs
 with RRv capacity. The total WQv is the runoff volume from the 1-year,
 24 hour design storm over the post-developed watershed and shall be

calculated in accordance with the criteria in Section 10.3 of the Design Manual.

(ii) Minimum RRv and Treatment of Remaining Total WQv: Construction activities that cannot meet the criteria in Part I.C.2.b.(i) of this permit due to site limitations shall direct runoff from all newly constructed impervious areas to a RR technique or standard SMP with RRv capacity unless infeasible. The specific site limitations that prevent the reduction of 100% of the WQv shall be documented in the SWPPP. For each impervious area that is not directed to a RR technique or standard SMP with RRv capacity, the SWPPP must include documentation which demonstrates that all options were considered and for each option explains why it is considered infeasible.

In no case shall the runoff reduction achieved from the newly constructed *impervious areas* be less than the Minimum RRv as calculated using the criteria in Section 10.3 of the Design Manual. The remaining portion of the total WQv that cannot be reduced shall be treated by application of standard SMPs.

- (iii) Channel Protection Volume (Cpv): Provide 24 hour extended detention of the post-developed 1-year, 24-hour storm event; remaining after runoff reduction. The Cpv requirement does not apply when:
 - (1) Reduction of the entire Cpv is achieved by application of runoff reduction techniques or infiltration systems, or
 - (2) The site *discharge*s directly to tidal waters, or fifth order or larger streams.
- (iv) Overbank Flood Control Criteria (Qp): Requires storage to attenuate the post-development 10-year, 24-hour peak discharge rate (Qp) to predevelopment rates. The Qp requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.
- (v) Extreme Flood Control Criteria (Qf): Requires storage to attenuate the post-development 100-year, 24-hour peak *discharge* rate (Qf) to predevelopment rates. The Qf requirement does not apply when:
 - (1) the site *discharges* directly to tidal waters or fifth order or larger streams, or
 - (2) A downstream analysis reveals that *overbank* control is not required.

c. Sizing Criteria for Redevelopment Activity

- (i) Water Quality Volume (WQv): The WQv treatment objective for redevelopment activity shall be addressed by one of the following options. Redevelopment activities located in an Enhanced Phosphorus Removal Watershed (see Part III.B.3. and Appendix C of this permit) shall calculate the WQv in accordance with Section 10.3 of the Design Manual. All other redevelopment activities shall calculate the WQv in accordance with Section 4.2 of the Design Manual.
 - (1) Reduce the existing *impervious cover* by a minimum of 25% of the total disturbed, *impervious area*. The Soil Restoration criteria in Section 5.1.6 of the Design Manual must be applied to all newly created pervious areas, or
 - (2) Capture and treat a minimum of 25% of the WQv from the disturbed, impervious area by the application of standard SMPs; or reduce 25% of the WQv from the disturbed, impervious area by the application of RR techniques or standard SMPs with RRv capacity., or
 - (3) Capture and treat a minimum of 75% of the WQv from the disturbed, *impervious area* as well as any additional runoff from tributary areas by application of the alternative practices discussed in Sections 9.3 and 9.4 of the Design Manual., or
 - (4) Application of a combination of 1, 2 and 3 above that provide a weighted average of at least two of the above methods. Application of this method shall be in accordance with the criteria in Section 9.2.1(B) (IV) of the Design Manual.

If there is an existing post-construction stormwater management practice located on the site that captures and treats runoff from the *impervious area* that is being disturbed, the WQv treatment option selected must, at a minimum, provide treatment equal to the treatment that was being provided by the existing practice(s) if that treatment is greater than the treatment required by options 1 - 4 above.

- (ii) Channel Protection Volume (Cpv): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site.
- (iii) Overbank Flood Control Criteria (Qp): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site.
- (iv) Extreme Flood Control Criteria (Qf): Not required if there are no changes to hydrology that increase the *discharge* rate from the project site

d. Sizing Criteria for Combination of Redevelopment Activity and New Development

Construction projects that include both New Development and Redevelopment Activity shall provide post-construction stormwater management controls that meet the sizing criteria calculated as an aggregate of the Sizing Criteria in Part I.C.2.a. or b. of this permit for the New Development portion of the project and Part I.C.2.c of this permit for Redevelopment Activity portion of the project.

D. Maintaining Water Quality

The Department expects that compliance with the conditions of this permit will control *discharges* necessary to meet applicable *water quality standards*. It shall be a violation of the *ECL* for any discharge to either cause or contribute to a violation of *water quality standards* as contained in Parts 700 through 705 of Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York, such as:

- 1. There shall be no increase in turbidity that will cause a substantial visible contrast to natural conditions;
- 2. There shall be no increase in suspended, colloidal or settleable solids that will cause deposition or impair the waters for their best usages; and
- 3. There shall be no residue from oil and floating substances, nor visible oil film, nor globules of grease.

If there is evidence indicating that the stormwater *discharges* authorized by this permit are causing, have the reasonable potential to cause, or are contributing to a violation of the *water quality standards*; the *owner or operator* must take appropriate corrective action in accordance with Part IV.C.5. of this general permit and document in accordance with Part IV.C.4. of this general permit. To address the *water quality standard* violation the *owner or operator* may need to provide additional information, include and implement appropriate controls in the SWPPP to correct the problem, or obtain an individual SPDES permit.

If there is evidence indicating that despite compliance with the terms and conditions of this general permit it is demonstrated that the stormwater *discharges* authorized by this permit are causing or contributing to a violation of *water quality standards*, or if the Department determines that a modification of the permit is necessary to prevent a violation of *water quality standards*, the authorized *discharges* will no longer be eligible for coverage under this permit. The Department may require the *owner or operator* to obtain an individual SPDES permit to continue discharging.

E. Eligibility Under This General Permit

- 1. This permit may authorize all *discharges* of stormwater from *construction activity* to *surface waters of the State* and *groundwaters* except for ineligible *discharges* identified under subparagraph F. of this Part.
- 2. Except for non-stormwater *discharges* explicitly listed in the next paragraph, this permit only authorizes stormwater *discharges*; including stormwater runoff, snowmelt runoff, and surface runoff and drainage, from *construction activities*.
- 3. Notwithstanding paragraphs E.1 and E.2 above, the following non-stormwater discharges are authorized by this permit: those listed in 6 NYCRR 750-1.2(a)(29)(vi), with the following exception: "Discharges from firefighting activities are authorized only when the firefighting activities are emergencies/unplanned"; waters to which other components have not been added that are used to control dust in accordance with the SWPPP; and uncontaminated *discharges* from *construction site* de-watering operations. All non-stormwater discharges must be identified in the SWPPP. Under all circumstances, the *owner or operator* must still comply with *water quality standards* in Part I.D of this permit.
- 4. The *owner or operator* must maintain permit eligibility to *discharge* under this permit. Any *discharges* that are not compliant with the eligibility conditions of this permit are not authorized by the permit and the *owner or operator* must either apply for a separate permit to cover those ineligible *discharges* or take steps necessary to make the *discharge* eligible for coverage.

F. Activities Which Are Ineligible for Coverage Under This General Permit

All of the following are **<u>not</u>** authorized by this permit:

- 1. *Discharges* after *construction activities* have been completed and the site has undergone *final stabilization*;
- Discharges that are mixed with sources of non-stormwater other than those expressly authorized under subsection E.3. of this Part and identified in the SWPPP required by this permit;
- 3. *Discharges* that are required to obtain an individual SPDES permit or another SPDES general permit pursuant to Part VII.K. of this permit;
- 4. Construction activities or discharges from construction activities that may adversely affect an endangered or threatened species unless the owner or

operator has obtained a permit issued pursuant to 6 NYCRR Part 182 for the project or the Department has issued a letter of non-jurisdiction for the project. All documentation necessary to demonstrate eligibility shall be maintained on site in accordance with Part II.D.2 of this permit;

- 5. *Discharges* which either cause or contribute to a violation of *water quality standards* adopted pursuant to the *ECL* and its accompanying regulations;
- 6. Construction activities for residential, commercial and institutional projects:
 - a. Where the *discharges* from the *construction activities* are tributary to waters of the state classified as AA or AA-s; and
 - b. Which are undertaken on land with no existing *impervious cover*, and
 - c. Which disturb one (1) or more acres of land designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.
- 7. *Construction activities* for linear transportation projects and linear utility projects:
 - a. Where the *discharges* from the *construction activities* are tributary to waters of the state classified as AA or AA-s; and
 - b. Which are undertaken on land with no existing impervious cover, and

c. Which disturb two (2) or more acres of land designated on the current USDA Soil Survey as Soil Slope Phase "D" (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase "E" or "F" (regardless of the map unit name), or a combination of the three designations.

- 8. Construction activities that have the potential to affect an *historic property*, unless there is documentation that such impacts have been resolved. The following documentation necessary to demonstrate eligibility with this requirement shall be maintained on site in accordance with Part II.D.2 of this permit and made available to the Department in accordance with Part VII.F of this permit:
 - a. Documentation that the *construction activity* is not within an archeologically sensitive area indicated on the sensitivity map, and that the *construction activity* is not located on or immediately adjacent to a property listed or determined to be eligible for listing on the National or State Registers of Historic Places, and that there is no new permanent building on the *construction site* within the following distances from a building, structure, or object that is more than 50 years old, or if there is such a new permanent building on the *construction site* within those parameters that NYS Office of Parks, Recreation and Historic Preservation (OPRHP), a Historic Preservation Commission of a Certified Local Government, or a qualified preservation professional has determined that the building, structure, or object more than 50 years old is not historically/archeologically significant.
 - 1-5 acres of disturbance 20 feet
 - 5-20 acres of disturbance 50 feet
 - 20+ acres of disturbance 100 feet, or
 - b. DEC consultation form sent to OPRHP, and copied to the NYS DEC Agency Historic Preservation Officer (APO), and
 - the State Environmental Quality Review (SEQR) Environmental Assessment Form (EAF) with a negative declaration or the Findings Statement, with documentation of OPRHP's agreement with the resolution; or
 - (ii) documentation from OPRHP that the *construction activity* will result in No Impact; or
 - (iii) documentation from OPRHP providing a determination of No Adverse Impact; or
 - (iv) a Letter of Resolution signed by the owner/operator, OPRHP and the DEC APO which allows for this *construction activity* to be eligible for coverage under the general permit in terms of the State Historic Preservation Act (SHPA); or
 - c. Documentation of satisfactory compliance with Section 106 of the National Historic Preservation Act for a coterminous project area:

- (i) No Affect
- (ii) No Adverse Affect
- (iii) Executed Memorandum of Agreement, or
- d. Documentation that:
- SHPA Section 14.09 has been completed by NYS DEC or another state agency.
- 9. *Discharges* from *construction activities* that are subject to an existing SPDES individual or general permit where a SPDES permit for *construction activity* has been terminated or denied; or where the *owner or operator* has failed to renew an expired individual permit.

Part II. PERMIT COVERAGE

A. How to Obtain Coverage

- An owner or operator of a construction activity that is not subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then submit a completed Notice of Intent (NOI) to the Department to be authorized to discharge under this permit.
- 2. An owner or operator of a construction activity that is subject to the requirements of a regulated, traditional land use control MS4 must first prepare a SWPPP in accordance with all applicable requirements of this permit and then have the SWPPP reviewed and accepted by the regulated, traditional land use control MS4 prior to submitting the NOI to the Department. The owner or operator shall have the "MS4 SWPPP Acceptance" form signed in accordance with Part VII.H., and then submit that form along with a completed NOI to the Department.
- 3. The requirement for an *owner or operator* to have its SWPPP reviewed and accepted by the *regulated, traditional land use control MS4* prior to submitting the NOI to the Department does not apply to an *owner or operator* that is obtaining permit coverage in accordance with the requirements in Part II.F. (Change of *Owner or Operator*) or where the *owner or operator* of the *construction activity* is the *regulated, traditional land use control MS4*. This exemption does not apply to *construction activities* subject to the New York City Administrative Code.

B. Notice of Intent (NOI) Submittal

 Prior to December 21, 2020, an owner or operator shall use either the electronic (eNOI) or paper version of the NOI that the Department prepared. Both versions of the NOI are located on the Department's website (http://www.dec.ny.gov/). The paper version of the NOI shall be signed in accordance with Part VII.H. of this permit and submitted to the following address:

NOTICE OF INTENT NYS DEC, Bureau of Water Permits 625 Broadway, 4th Floor Albany, New York 12233-3505

- 2. Beginning December 21, 2020 and in accordance with EPA's 2015 NPDES Electronic Reporting Rule (40 CFR Part 127), the *owner or operator* must submit the NOI electronically using the *Department's* online NOI.
- 3. The *owner or operator* shall have the SWPPP preparer sign the "SWPPP Preparer Certification" statement on the NOI prior to submitting the form to the Department.
- 4. As of the date the NOI is submitted to the Department, the *owner or operator* shall make the NOI and SWPPP available for review and copying in accordance with the requirements in Part VII.F. of this permit.

C. Permit Authorization

- 1. An owner or operator shall not commence construction activity until their authorization to discharge under this permit goes into effect.
- 2. Authorization to *discharge* under this permit will be effective when the *owner or operator* has satisfied <u>all</u> of the following criteria:
 - a. project review pursuant to the State Environmental Quality Review Act ("SEQRA") have been satisfied, when SEQRA is applicable. See the Department's website (<u>http://www.dec.ny.gov/</u>) for more information,
 - b. where required, all necessary Department permits subject to the Uniform Procedures Act ("UPA") (see 6 NYCRR Part 621), or the equivalent from another New York State agency, have been obtained, unless otherwise notified by the Department pursuant to 6 NYCRR 621.3(a)(4). Owners or operators of construction activities that are required to obtain UPA permits

must submit a preliminary SWPPP to the appropriate DEC Permit Administrator at the Regional Office listed in Appendix F at the time all other necessary UPA permit applications are submitted. The preliminary SWPPP must include sufficient information to demonstrate that the *construction activity* qualifies for authorization under this permit,

- c. the final SWPPP has been prepared, and
- d. a complete NOI has been submitted to the Department in accordance with the requirements of this permit.
- 3. An owner or operator that has satisfied the requirements of Part II.C.2 above will be authorized to *discharge* stormwater from their *construction activity* in accordance with the following schedule:
 - a. For construction activities that are <u>not</u> subject to the requirements of a *regulated, traditional land use control MS4*:
 - (i) Five (5) business days from the date the Department receives a complete electronic version of the NOI (eNOI) for *construction activities* with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C.; or
 - (ii) Sixty (60) business days from the date the Department receives a complete NOI (electronic or paper version) for *construction activities* with a SWPPP that has <u>not</u> been prepared in conformance with the design criteria in technical standard referenced in Part III.B.1. or, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C., the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, or;
 - (iii) Ten (10) business days from the date the Department receives a complete paper version of the NOI for *construction activities* with a SWPPP that has been prepared in conformance with the design criteria in the technical standard referenced in Part III.B.1 and the *performance criteria* in the technical standard referenced in Parts III.B., 2 or 3, for *construction activities* that require post-construction stormwater management practices pursuant to Part III.C.

- b. For *construction activities* that are subject to the requirements of a *regulated, traditional land use control MS4*:
 - Five (5) business days from the date the Department receives both a complete electronic version of the NOI (eNOI) and signed "MS4 SWPPP Acceptance" form, or
 - (ii) Ten (10) business days from the date the Department receives both a complete paper version of the NOI and signed "MS4 SWPPP Acceptance" form.
- 4. Coverage under this permit authorizes stormwater *discharges* from only those areas of disturbance that are identified in the NOI. If an *owner or operator* wishes to have stormwater *discharges* from future or additional areas of disturbance authorized, they must submit a new NOI that addresses that phase of the development, unless otherwise notified by the Department. The *owner or operator* shall not *commence construction activity* on the future or additional areas until their authorization to *discharge* under this permit goes into effect in accordance with Part II.C. of this permit.

D. General Requirements For Owners or Operators With Permit Coverage

- The owner or operator shall ensure that the provisions of the SWPPP are implemented from the commencement of construction activity until all areas of disturbance have achieved *final stabilization* and the Notice of Termination ("NOT") has been submitted to the Department in accordance with Part V. of this permit. This includes any changes made to the SWPPP pursuant to Part III.A.4. of this permit.
- 2. The owner or operator shall maintain a copy of the General Permit (GP-0-20-001), NOI, NOI Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form, inspection reports, responsible contractor's or subcontractor's certification statement (see Part III.A.6.), and all documentation necessary to demonstrate eligibility with this permit at the construction site until all disturbed areas have achieved final stabilization and the NOT has been submitted to the Department. The documents must be maintained in a secure location, such as a job trailer, on-site construction office, or mailbox with lock. The secure location must be accessible during normal business hours to an individual performing a compliance inspection.
- 3. The owner or operator of a construction activity shall not disturb greater than five (5) acres of soil at any one time without prior written authorization from the Department or, in areas under the jurisdiction of a *regulated, traditional land*

use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity). At a minimum, the owner or operator must comply with the following requirements in order to be authorized to disturb greater than five (5) acres of soil at any one time:

- a. The owner or operator shall have a qualified inspector conduct at least two (2) site inspections in accordance with Part IV.C. of this permit every seven (7) calendar days, for as long as greater than five (5) acres of soil remain disturbed. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- b. In areas where soil disturbance activity has temporarily or permanently ceased, the application of soil stabilization measures must be initiated by the end of the next business day and completed within seven (7) days from the date the current soil disturbance activity ceased. The soil stabilization measures selected shall be in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016.
- c. The *owner or operator* shall prepare a phasing plan that defines maximum disturbed area per phase and shows required cuts and fills.
- d. The *owner or operator* shall install any additional site-specific practices needed to protect water quality.
- e. The *owner or operator* shall include the requirements above in their SWPPP.
- 4. In accordance with statute, regulations, and the terms and conditions of this permit, the Department may suspend or revoke an *owner's or operator's* coverage under this permit at any time if the Department determines that the SWPPP does not meet the permit requirements or consistent with Part VII.K..
- 5. Upon a finding of significant non-compliance with the practices described in the SWPPP or violation of this permit, the Department may order an immediate stop to all activity at the site until the non-compliance is remedied. The stop work order shall be in writing, describe the non-compliance in detail, and be sent to the *owner or operator*.
- 6. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4, the owner or operator shall notify the

regulated, traditional land use control MS4 in writing of any planned amendments or modifications to the post-construction stormwater management practice component of the SWPPP required by Part III.A. 4. and 5. of this permit. Unless otherwise notified by the *regulated, traditional land use control MS4*, the owner or operator shall have the SWPPP amendments or modifications reviewed and accepted by the *regulated, traditional land use control MS4* prior to commencing construction of the post-construction stormwater management practice.

E. Permit Coverage for Discharges Authorized Under GP-0-15-002

 Upon renewal of SPDES General Permit for Stormwater Discharges from Construction Activity (Permit No. GP-0-15-002), an owner or operator of a construction activity with coverage under GP-0-15-002, as of the effective date of GP- 0-20-001, shall be authorized to discharge in accordance with GP- 0-20-001, unless otherwise notified by the Department.

An *owner or operator* may continue to implement the technical/design components of the post-construction stormwater management controls provided that such design was done in conformance with the technical standards in place at the time of initial project authorization. However, they must comply with the other, non-design provisions of GP-0-20-001.

F. Change of Owner or Operator

- When property ownership changes or when there is a change in operational control over the construction plans and specifications, the original owner or operator must notify the new owner or operator, in writing, of the requirement to obtain permit coverage by submitting a NOI with the Department. For construction activities subject to the requirements of a regulated, traditional land use control MS4, the original owner or operator must also notify the MS4, in writing, of the change in ownership at least 30 calendar days prior to the change in ownership.
- 2. Once the new *owner or operator* obtains permit coverage, the original *owner or operator* shall then submit a completed NOT with the name and permit identification number of the new *owner or operator* to the Department at the address in Part II.B.1. of this permit. If the original *owner or operator* maintains ownership of a portion of the *construction activity* and will disturb soil, they must maintain their coverage under the permit.
- 3. Permit coverage for the new *owner or operator* will be effective as of the date the Department receives a complete NOI, provided the original *owner or*

operator was not subject to a sixty (60) business day authorization period that has not expired as of the date the Department receives the NOI from the new owner or operator.

Part III. STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

A. General SWPPP Requirements

- 1. A SWPPP shall be prepared and implemented by the owner or operator of each construction activity covered by this permit. The SWPPP must document the selection, design, installation, implementation and maintenance of the control measures and practices that will be used to meet the effluent limitations in Part I.B. of this permit and where applicable, the post-construction stormwater management practice requirements in Part I.C. of this permit. The SWPPP shall be prepared prior to the submittal of the NOI. The NOI shall be submitted to the Department prior to the commencement of construction activity. A copy of the completed, final NOI shall be included in the SWPPP.
- 2. The SWPPP shall describe the erosion and sediment control practices and where required, post-construction stormwater management practices that will be used and/or constructed to reduce the *pollutants* in stormwater *discharges* and to assure compliance with the terms and conditions of this permit. In addition, the SWPPP shall identify potential sources of pollution which may reasonably be expected to affect the quality of stormwater *discharges*.
- 3. All SWPPPs that require the post-construction stormwater management practice component shall be prepared by a *qualified professional* that is knowledgeable in the principles and practices of stormwater management and treatment.
- 4. The *owner or operator* must keep the SWPPP current so that it at all times accurately documents the erosion and sediment controls practices that are being used or will be used during construction, and all post-construction stormwater management practices that will be constructed on the site. At a minimum, the *owner or operator* shall amend the SWPPP, including construction drawings:
 - a. whenever the current provisions prove to be ineffective in minimizing *pollutants* in stormwater *discharges* from the site;

- b. whenever there is a change in design, construction, or operation at the *construction site* that has or could have an effect on the *discharge* of *pollutants*;
- c. to address issues or deficiencies identified during an inspection by the *qualified inspector,* the Department or other regulatory authority; and
- d. to document the final construction conditions.
- 5. The Department may notify the *owner or operator* at any time that the SWPPP does not meet one or more of the minimum requirements of this permit. The notification shall be in writing and identify the provisions of the SWPPP that require modification. Within fourteen (14) calendar days of such notification, or as otherwise indicated by the Department, the *owner or operator* shall make the required changes to the SWPPP and submit written notification to the Department that the changes have been made. If the *owner or operator* does not respond to the Department's comments in the specified time frame, the Department may suspend the *owner's or operator's* coverage under this permit or require the *owner or operator* to obtain coverage under an individual SPDES permit in accordance with Part II.D.4. of this permit.
- 6. Prior to the commencement of construction activity, the owner or operator must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP. The owner or operator shall have each of the contractors and subcontractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the *trained contractor*. The owner or operator shall ensure that at least one *trained contractor* is on site on a daily basis when soil disturbance activities are being performed.

The *owner or operator* shall have each of the contractors and subcontractors identified above sign a copy of the following certification statement below before they commence any *construction activity*:

"I hereby certify under penalty of law that I understand and agree to comply with the terms and conditions of the SWPPP and agree to implement any corrective actions identified by the *qualified inspector* during a site inspection. I also understand that the *owner or operator* must comply with

(Part III.A.6)

the terms and conditions of the most current version of the New York State Pollutant Discharge Elimination System ("SPDES") general permit for stormwater *discharges* from *construction activities* and that it is unlawful for any person to cause or contribute to a violation of *water quality standards*. Furthermore, I am aware that there are significant penalties for submitting false information, that I do not believe to be true, including the possibility of fine and imprisonment for knowing violations"

In addition to providing the certification statement above, the certification page must also identify the specific elements of the SWPPP that each contractor and subcontractor will be responsible for and include the name and title of the person providing the signature; the name and title of the *trained contractor* responsible for SWPPP implementation; the name, address and telephone number of the contracting firm; the address (or other identifying description) of the site; and the date the certification statement is signed. The *owner or operator* shall attach the certification statement(s) to the copy of the SWPPP that is maintained at the *construction site*. If new or additional contractors are hired to implement measures identified in the SWPPP after construction has commenced, they must also sign the certification statement and provide the information listed above.

7. For projects where the Department requests a copy of the SWPPP or inspection reports, the *owner or operator* shall submit the documents in both electronic (PDF only) and paper format within five (5) business days, unless otherwise notified by the Department.

B. Required SWPPP Contents

- 1. Erosion and sediment control component All SWPPPs prepared pursuant to this permit shall include erosion and sediment control practices designed in conformance with the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Where erosion and sediment control practices are not designed in conformance with the design criteria included in the technical standard, the *owner or operator* must demonstrate *equivalence* to the technical standard. At a minimum, the erosion and sediment control component of the SWPPP shall include the following:
 - a. Background information about the scope of the project, including the location, type and size of project

- b. A site map/construction drawing(s) for the project, including a general location map. At a minimum, the site map shall show the total site area; all improvements; areas of disturbance; areas that will not be disturbed; existing vegetation; on-site and adjacent off-site surface water(s); floodplain/floodway boundaries; wetlands and drainage patterns that could be affected by the *construction activity*; existing and final contours; locations of different soil types with boundaries; material, waste, borrow or equipment storage areas located on adjacent properties; and location(s) of the stormwater *discharge*(s);
- c. A description of the soil(s) present at the site, including an identification of the Hydrologic Soil Group (HSG);
- d. A construction phasing plan and sequence of operations describing the intended order of *construction activities*, including clearing and grubbing, excavation and grading, utility and infrastructure installation and any other activity at the site that results in soil disturbance;
- e. A description of the minimum erosion and sediment control practices to be installed or implemented for each *construction activity* that will result in soil disturbance. Include a schedule that identifies the timing of initial placement or implementation of each erosion and sediment control practice and the minimum time frames that each practice should remain in place or be implemented;
- f. A temporary and permanent soil stabilization plan that meets the requirements of this general permit and the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016, for each stage of the project, including initial land clearing and grubbing to project completion and achievement of *final stabilization*;
- g. A site map/construction drawing(s) showing the specific location(s), size(s), and length(s) of each erosion and sediment control practice;
- The dimensions, material specifications, installation details, and operation and maintenance requirements for all erosion and sediment control practices. Include the location and sizing of any temporary sediment basins and structural practices that will be used to divert flows from exposed soils;
- i. A maintenance inspection schedule for the contractor(s) identified in Part III.A.6. of this permit, to ensure continuous and effective operation of the erosion and sediment control practices. The maintenance inspection

schedule shall be in accordance with the requirements in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016;

- j. A description of the pollution prevention measures that will be used to control litter, construction chemicals and construction debris from becoming a *pollutant* source in the stormwater *discharges*;
- k. A description and location of any stormwater *discharges* associated with industrial activity other than construction at the site, including, but not limited to, stormwater *discharges* from asphalt plants and concrete plants located on the *construction site*; and
- I. Identification of any elements of the design that are not in conformance with the design criteria in the technical standard, New York State Standards and Specifications for Erosion and Sediment Control, dated November 2016. Include the reason for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.
- Post-construction stormwater management practice component The owner or operator of any construction project identified in Table 2 of Appendix B as needing post-construction stormwater management practices shall prepare a SWPPP that includes practices designed in conformance with the applicable sizing criteria in Part I.C.2.a., c. or d. of this permit and the performance criteria in the technical standard, New York State Stormwater Management Design Manual dated January 2015

Where post-construction stormwater management practices are not designed in conformance with the *performance criteria* in the technical standard, the *owner or operator* must include in the SWPPP the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the technical standard.

The post-construction stormwater management practice component of the SWPPP shall include the following:

 a. Identification of all post-construction stormwater management practices to be constructed as part of the project. Include the dimensions, material specifications and installation details for each post-construction stormwater management practice;

- b. A site map/construction drawing(s) showing the specific location and size of each post-construction stormwater management practice;
- c. A Stormwater Modeling and Analysis Report that includes:
 - Map(s) showing pre-development conditions, including watershed/subcatchments boundaries, flow paths/routing, and design points;
 - Map(s) showing post-development conditions, including watershed/subcatchments boundaries, flow paths/routing, design points and post-construction stormwater management practices;
 - (iii) Results of stormwater modeling (i.e. hydrology and hydraulic analysis) for the required storm events. Include supporting calculations (model runs), methodology, and a summary table that compares pre and postdevelopment runoff rates and volumes for the different storm events;
 - (iv) Summary table, with supporting calculations, which demonstrates that each post-construction stormwater management practice has been designed in conformance with the *sizing criteria* included in the Design Manual;
 - (v) Identification of any *sizing criteria* that is not required based on the requirements included in Part I.C. of this permit; and
 - (vi) Identification of any elements of the design that are not in conformance with the *performance criteria* in the Design Manual. Include the reason(s) for the deviation or alternative design and provide information which demonstrates that the deviation or alternative design is *equivalent* to the Design Manual;
- d. Soil testing results and locations (test pits, borings);
- e. Infiltration test results, when required; and
- f. An operations and maintenance plan that includes inspection and maintenance schedules and actions to ensure continuous and effective operation of each post-construction stormwater management practice. The plan shall identify the entity that will be responsible for the long term operation and maintenance of each practice.

3. Enhanced Phosphorus Removal Standards - All construction projects identified in Table 2 of Appendix B that are located in the watersheds identified in Appendix C shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the applicable *sizing criteria* in Part I.C.2. b., c. or d. of this permit and the *performance criteria*, Enhanced Phosphorus Removal Standards included in the Design Manual. At a minimum, the post-construction stormwater management practice component of the SWPPP shall include items 2.a - 2.f. above.

C. Required SWPPP Components by Project Type

Unless otherwise notified by the Department, *owners or operators* of *construction activities* identified in Table 1 of Appendix B are required to prepare a SWPPP that only includes erosion and sediment control practices designed in conformance with Part III.B.1 of this permit. *Owners or operators* of the *construction activities* identified in Table 2 of Appendix B shall prepare a SWPPP that also includes post-construction stormwater management practices designed in conformance with Part III.B.2 or 3 of this permit.

Part IV. INSPECTION AND MAINTENANCE REQUIREMENTS

A. General Construction Site Inspection and Maintenance Requirements

- 1. The *owner or operator* must ensure that all erosion and sediment control practices (including pollution prevention measures) and all post-construction stormwater management practices identified in the SWPPP are inspected and maintained in accordance with Part IV.B. and C. of this permit.
- 2. The terms of this permit shall not be construed to prohibit the State of New York from exercising any authority pursuant to the ECL, common law or federal law, or prohibit New York State from taking any measures, whether civil or criminal, to prevent violations of the laws of the State of New York or protect the public health and safety and/or the environment.

B. Contractor Maintenance Inspection Requirements

1. The owner or operator of each construction activity identified in Tables 1 and 2 of Appendix B shall have a *trained contractor* inspect the erosion and sediment control practices and pollution prevention measures being implemented within the active work area daily to ensure that they are being maintained in effective operating condition at all times. If deficiencies are identified, the contractor shall

begin implementing corrective actions within one business day and shall complete the corrective actions in a reasonable time frame.

- 2. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and *temporary stabilization* measures have been applied to all disturbed areas, the *trained contractor* can stop conducting the maintenance inspections. The *trained contractor* shall begin conducting the maintenance inspections in accordance with Part IV.B.1. of this permit as soon as soil disturbance activities resume.
- 3. For construction sites where soil disturbance activities have been shut down with partial project completion, the *trained contractor* can stop conducting the maintenance inspections if all areas disturbed as of the project shutdown date have achieved *final stabilization* and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational.

C. Qualified Inspector Inspection Requirements

The owner or operator shall have a *qualified inspector* conduct site inspections in conformance with the following requirements:

[Note: The *trained contractor* identified in Part III.A.6. and IV.B. of this permit **cannot** conduct the *qualified inspector* site inspections unless they meet the *qualified inspector* qualifications included in Appendix A. In order to perform these inspections, the *trained contractor* would have to be a:

- licensed Professional Engineer,
- Certified Professional in Erosion and Sediment Control (CPESC),
- New York State Erosion and Sediment Control Certificate Program holder
- Registered Landscape Architect, or
- someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity].
- 1. A *qualified inspector* shall conduct site inspections for all *construction activities* identified in Tables 1 and 2 of Appendix B, <u>with the exception of</u>:
 - a. the construction of a single family residential subdivision with 25% or less *impervious cover* at total site build-out that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located

in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;

- b. the construction of a single family home that involves a soil disturbance of one (1) or more acres of land but less than five (5) acres and is <u>not</u> located in one of the watersheds listed in Appendix C and <u>not</u> directly discharging to one of the 303(d) segments listed in Appendix E;
- c. construction on agricultural property that involves a soil disturbance of one
 (1) or more acres of land but less than five (5) acres; and
- d. *construction activities* located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land.
- 2. Unless otherwise notified by the Department, the *qualified inspector* shall conduct site inspections in accordance with the following timetable:
 - a. For construction sites where soil disturbance activities are on-going, the *qualified inspector* shall conduct a site inspection at least once every seven (7) calendar days.
 - b. For construction sites where soil disturbance activities are on-going and the owner or operator has received authorization in accordance with Part II.D.3 to disturb greater than five (5) acres of soil at any one time, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
 - c. For construction sites where soil disturbance activities have been temporarily suspended (e.g. winter shutdown) and *temporary stabilization* measures have been applied to all disturbed areas, the *qualified inspector* shall conduct a site inspection at least once every thirty (30) calendar days. The *owner or operator* shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a *regulated, traditional land use control MS4*, the *regulated, traditional land use control MS4* (provided the *regulated, traditional land use control MS4* is not the *owner or operator* of the *construction activity*) in writing prior to reducing the frequency of inspections.

- d. For construction sites where soil disturbance activities have been shut down with partial project completion, the *qualified inspector* can stop conducting inspections if all areas disturbed as of the project shutdown date have achieved final stabilization and all post-construction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational. The owner or operator shall notify the DOW Water (SPDES) Program contact at the Regional Office (see contact information in Appendix F) or, in areas under the jurisdiction of a regulated, traditional land use control MS4, the regulated, traditional land use control MS4 (provided the regulated, traditional land use control MS4 is not the owner or operator of the construction activity) in writing prior to the shutdown. If soil disturbance activities are not resumed within 2 years from the date of shutdown, the owner or operator shall have the qualified inspector perform a final inspection and certify that all disturbed areas have achieved final stabilization, and all temporary, structural erosion and sediment control measures have been removed; and that all post-construction stormwater management practices have been constructed in conformance with the SWPPP by signing the "Final Stabilization" and "Post-Construction" Stormwater Management Practice" certification statements on the NOT. The owner or operator shall then submit the completed NOT form to the address in Part II.B.1 of this permit.
- e. For construction sites that directly *discharge* to one of the 303(d) segments listed in Appendix E or is located in one of the watersheds listed in Appendix C, the *qualified inspector* shall conduct at least two (2) site inspections every seven (7) calendar days. The two (2) inspections shall be separated by a minimum of two (2) full calendar days.
- 3. At a minimum, the *qualified inspector* shall inspect all erosion and sediment control practices and pollution prevention measures to ensure integrity and effectiveness, all post-construction stormwater management practices under construction to ensure that they are constructed in conformance with the SWPPP, all areas of disturbance that have not achieved *final stabilization,* all points of *discharge* to natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the *construction site*, and all points of *discharge* from the *construction site*.
- 4. The *qualified inspector* shall prepare an inspection report subsequent to each and every inspection. At a minimum, the inspection report shall include and/or address the following:

- a. Date and time of inspection;
- b. Name and title of person(s) performing inspection;
- c. A description of the weather and soil conditions (e.g. dry, wet, saturated) at the time of the inspection;
- d. A description of the condition of the runoff at all points of *discharge* from the *construction site*. This shall include identification of any *discharges* of sediment from the *construction site*. Include *discharges* from conveyance systems (i.e. pipes, culverts, ditches, etc.) and overland flow;
- e. A description of the condition of all natural surface waterbodies located within, or immediately adjacent to, the property boundaries of the *construction site* which receive runoff from disturbed areas. This shall include identification of any *discharges* of sediment to the surface waterbody;
- f. Identification of all erosion and sediment control practices and pollution prevention measures that need repair or maintenance;
- Identification of all erosion and sediment control practices and pollution prevention measures that were not installed properly or are not functioning as designed and need to be reinstalled or replaced;
- Description and sketch of areas with active soil disturbance activity, areas that have been disturbed but are inactive at the time of the inspection, and areas that have been stabilized (temporary and/or final) since the last inspection;
- i. Current phase of construction of all post-construction stormwater management practices and identification of all construction that is not in conformance with the SWPPP and technical standards;
- j. Corrective action(s) that must be taken to install, repair, replace or maintain erosion and sediment control practices and pollution prevention measures; and to correct deficiencies identified with the construction of the postconstruction stormwater management practice(s);
- k. Identification and status of all corrective actions that were required by previous inspection; and

- I. Digital photographs, with date stamp, that clearly show the condition of all practices that have been identified as needing corrective actions. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report being maintained onsite within seven (7) calendar days of the date of the inspection. The *qualified inspector* shall also take digital photographs, with date stamp, that clearly show the condition of the practice(s) after the corrective action has been completed. The *qualified inspector* shall attach paper color copies of the digital photographs to the inspection report that documents the completion of the corrective action work within seven (7) calendar days of that inspection.
- 5. Within one business day of the completion of an inspection, the *qualified inspector* shall notify the *owner or operator* and appropriate contractor or subcontractor identified in Part III.A.6. of this permit of any corrective actions that need to be taken. The contractor or subcontractor shall begin implementing the corrective actions within one business day of this notification and shall complete the corrective actions in a reasonable time frame.
- 6. All inspection reports shall be signed by the *qualified inspector*. Pursuant to Part II.D.2. of this permit, the inspection reports shall be maintained on site with the SWPPP.

Part V. TERMINATION OF PERMIT COVERAGE

A. Termination of Permit Coverage

- An owner or operator that is eligible to terminate coverage under this permit must submit a completed NOT form to the address in Part II.B.1 of this permit. The NOT form shall be one which is associated with this permit, signed in accordance with Part VII.H of this permit.
- 2. An *owner or operator* may terminate coverage when one or more the following conditions have been met:
 - a. Total project completion All *construction activity* identified in the SWPPP has been completed; <u>and</u> all areas of disturbance have achieved *final stabilization*; <u>and</u> all temporary, structural erosion and sediment control measures have been removed; <u>and</u> all post-construction stormwater management practices have been constructed in conformance with the SWPPP and are operational;

- b. Planned shutdown with partial project completion All soil disturbance activities have ceased; and all areas disturbed as of the project shutdown date have achieved *final stabilization*; and all temporary, structural erosion and sediment control measures have been removed; and all postconstruction stormwater management practices required for the completed portion of the project have been constructed in conformance with the SWPPP and are operational;
- c. A new *owner or operator* has obtained coverage under this permit in accordance with Part II.F. of this permit.
- d. The *owner or operator* obtains coverage under an alternative SPDES general permit or an individual SPDES permit.
- 3. For *construction activities* meeting subdivision 2a. or 2b. of this Part, the *owner or operator* shall have the *qualified inspector* perform a final site inspection prior to submitting the NOT. The *qualified inspector* shall, by signing the "*Final Stabilization*" and "Post-Construction Stormwater Management Practice certification statements on the NOT, certify that all the requirements in Part V.A.2.a. or b. of this permit have been achieved.
- 4. For construction activities that are subject to the requirements of a regulated, traditional land use control MS4 and meet subdivision 2a. or 2b. of this Part, the owner or operator shall have the regulated, traditional land use control MS4 sign the "MS4 Acceptance" statement on the NOT in accordance with the requirements in Part VII.H. of this permit. The regulated, traditional land use control MS4 official, by signing this statement, has determined that it is acceptable for the owner or operator to submit the NOT in accordance with the requirements of this Part. The regulated, traditional land use control MS4 can make this determination by performing a final site inspection themselves or by accepting the qualified inspector's final site inspection certification(s) required in Part V.A.3. of this permit.
- 5. For *construction activities* that require post-construction stormwater management practices and meet subdivision 2a. of this Part, the *owner or operator* must, prior to submitting the NOT, ensure one of the following:
 - a. the post-construction stormwater management practice(s) and any right-ofway(s) needed to maintain such practice(s) have been deeded to the municipality in which the practice(s) is located,

- b. an executed maintenance agreement is in place with the municipality that will maintain the post-construction stormwater management practice(s),
- c. for post-construction stormwater management practices that are privately owned, the *owner or operator* has a mechanism in place that requires operation and maintenance of the practice(s) in accordance with the operation and maintenance plan, such as a deed covenant in the *owner or operator's* deed of record,
- d. for post-construction stormwater management practices that are owned by a public or private institution (e.g. school, university, hospital), government agency or authority, or public utility; the *owner or operator* has policy and procedures in place that ensures operation and maintenance of the practices in accordance with the operation and maintenance plan.

Part VI. REPORTING AND RETENTION RECORDS

A. Record Retention

The owner or operator shall retain a copy of the NOI, NOI

Acknowledgment Letter, SWPPP, MS4 SWPPP Acceptance form and any inspection reports that were prepared in conjunction with this permit for a period of at least five (5) years from the date that the Department receives a complete NOT submitted in accordance with Part V. of this general permit.

B. Addresses

With the exception of the NOI, NOT, and MS4 SWPPP Acceptance form (which must be submitted to the address referenced in Part II.B.1 of this permit), all written correspondence requested by the Department, including individual permit applications, shall be sent to the address of the appropriate DOW Water (SPDES) Program contact at the Regional Office listed in Appendix F.

Part VII. STANDARD PERMIT CONDITIONS

A. Duty to Comply

The *owner or operator* must comply with all conditions of this permit. All contractors and subcontractors associated with the project must comply with the terms of the SWPPP. Any non-compliance with this permit constitutes a violation of the Clean Water

(Part VII.A)

Act (CWA) and the ECL and is grounds for an enforcement action against the *owner or operator* and/or the contractor/subcontractor; permit revocation, suspension or modification; or denial of a permit renewal application. Upon a finding of significant non-compliance with this permit or the applicable SWPPP, the Department may order an immediate stop to all *construction activity* at the site until the non-compliance is remedied. The stop work order shall be in writing, shall describe the non-compliance in detail, and shall be sent to the *owner or operator*.

If any human remains or archaeological remains are encountered during excavation, the *owner or operator* must immediately cease, or cause to cease, all *construction activity* in the area of the remains and notify the appropriate Regional Water Engineer (RWE). *Construction activity* shall not resume until written permission to do so has been received from the RWE.

B. Continuation of the Expired General Permit

This permit expires five (5) years from the effective date. If a new general permit is not issued prior to the expiration of this general permit, an *owner or operator* with coverage under this permit may continue to operate and *discharge* in accordance with the terms and conditions of this general permit, if it is extended pursuant to the State Administrative Procedure Act and 6 NYCRR Part 621, until a new general permit is issued.

C. Enforcement

Failure of the *owner or operator,* its contractors, subcontractors, agents and/or assigns to strictly adhere to any of the permit requirements contained herein shall constitute a violation of this permit. There are substantial criminal, civil, and administrative penalties associated with violating the provisions of this permit. Fines of up to \$37,500 per day for each violation and imprisonment for up to fifteen (15) years may be assessed depending upon the nature and degree of the offense.

D. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for an *owner or operator* in an enforcement action that it would have been necessary to halt or reduce the *construction activity* in order to maintain compliance with the conditions of this permit.

E. Duty to Mitigate

The owner or operator and its contractors and subcontractors shall take all reasonable steps to *minimize* or prevent any *discharge* in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment.

F. Duty to Provide Information

The owner or operator shall furnish to the Department, within a reasonable specified time period of a written request, all documentation necessary to demonstrate eligibility and any information to determine compliance with this permit or to determine whether cause exists for modifying or revoking this permit, or suspending or denying coverage under this permit, in accordance with the terms and conditions of this permit. The NOI, SWPPP and inspection reports required by this permit are public documents that the owner or operator must make available for review and copying by any person within five (5) business days of the owner or operator receiving a written request by any such person to review these documents. Copying of documents will be done at the requester's expense.

G. Other Information

When the *owner or operator* becomes aware that they failed to submit any relevant facts, or submitted incorrect information in the NOI or in any of the documents required by this permit, or have made substantive revisions to the SWPPP (e.g. the scope of the project changes significantly, the type of post-construction stormwater management practice(s) changes, there is a reduction in the sizing of the post-construction stormwater management practice, or there is an increase in the disturbance area or *impervious area*), which were not reflected in the original NOI submitted to the Department, they shall promptly submit such facts or information to the Department using the contact information in Part II.A. of this permit. Failure of the *owner or operator* to correct or supplement any relevant facts within five (5) business days of becoming aware of the deficiency shall constitute a violation of this permit.

H. Signatory Requirements

- 1. All NOIs and NOTs shall be signed as follows:
 - a. For a corporation these forms shall be signed by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:

- a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or
- (ii) the manager of one or more manufacturing, production or operating facilities, provided the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures;
- b. For a partnership or sole proprietorship these forms shall be signed by a general partner or the proprietor, respectively; or
- c. For a municipality, State, Federal, or other public agency these forms shall be signed by either a principal executive officer or ranking elected official. For purposes of this section, a principal executive officer of a Federal agency includes:
 - (i) the chief executive officer of the agency, or
 - (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of EPA).
- 2. The SWPPP and other information requested by the Department shall be signed by a person described in Part VII.H.1. of this permit or by a duly authorized representative of that person. A person is a duly authorized representative only if:
 - a. The authorization is made in writing by a person described in Part VII.H.1. of this permit;
 - b. The authorization specifies either an individual or a position having responsibility for the overall operation of the regulated facility or activity, such as the position of plant manager, operator of a well or a well field,

superintendent, position of *equivalent* responsibility, or an individual or position having overall responsibility for environmental matters for the company. (A duly authorized representative may thus be either a named individual or any individual occupying a named position) and,

- c. The written authorization shall include the name, title and signature of the authorized representative and be attached to the SWPPP.
- 3. All inspection reports shall be signed by the *qualified inspector* that performs the inspection.
- 4. The MS4 SWPPP Acceptance form shall be signed by the principal executive officer or ranking elected official from the *regulated, traditional land use control MS4,* or by a duly authorized representative of that person.

It shall constitute a permit violation if an incorrect and/or improper signatory authorizes any required forms, SWPPP and/or inspection reports.

I. Property Rights

The issuance of this permit does not convey any property rights of any sort, nor any exclusive privileges, nor does it authorize any injury to private property nor any invasion of personal rights, nor any infringement of Federal, State or local laws or regulations. *Owners or operators* must obtain any applicable conveyances, easements, licenses and/or access to real property prior to *commencing construction activity*.

J. Severability

The provisions of this permit are severable, and if any provision of this permit, or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit shall not be affected thereby.

K. Requirement to Obtain Coverage Under an Alternative Permit

1. The Department may require any owner or operator authorized by this permit to apply for and/or obtain either an individual SPDES permit or another SPDES general permit. When the Department requires any discharger authorized by a general permit to apply for an individual SPDES permit, it shall notify the discharger in writing that a permit application is required. This notice shall

include a brief statement of the reasons for this decision, an application form, a statement setting a time frame for the owner or operator to file the application for an individual SPDES permit, and a deadline, not sooner than 180 days from owner or operator receipt of the notification letter, whereby the authorization to discharge under this general permit shall be terminated. Applications must be submitted to the appropriate Permit Administrator at the Regional Office. The Department may grant additional time upon demonstration, to the satisfaction of the Department, that additional time to apply for an alternative authorization is necessary or where the Department has not provided a permit determination in accordance with Part 621 of this Title.

2. When an individual SPDES permit is issued to a discharger authorized to *discharge* under a general SPDES permit for the same *discharge*(s), the general permit authorization for outfalls authorized under the individual SPDES permit is automatically terminated on the effective date of the individual permit unless termination is earlier in accordance with 6 NYCRR Part 750.

L. Proper Operation and Maintenance

The owner or operator shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the owner or operator to achieve compliance with the conditions of this permit and with the requirements of the SWPPP.

M. Inspection and Entry

The owner or operator shall allow an authorized representative of the Department, EPA, applicable county health department, or, in the case of a *construction site* which *discharges* through an *MS4*, an authorized representative of the *MS4* receiving the discharge, upon the presentation of credentials and other documents as may be required by law, to:

- 1. Enter upon the owner's or operator's premises where a regulated facility or activity is located or conducted or where records must be kept under the conditions of this permit;
- 2. Have access to and copy at reasonable times, any records that must be kept under the conditions of this permit; and

- 3. Inspect at reasonable times any facilities or equipment (including monitoring and control equipment), practices or operations regulated or required by this permit.
- 4. Sample or monitor at reasonable times, for purposes of assuring permit compliance or as otherwise authorized by the Act or ECL, any substances or parameters at any location.

N. Permit Actions

This permit may, at any time, be modified, suspended, revoked, or renewed by the Department in accordance with 6 NYCRR Part 621. The filing of a request by the *owner or operator* for a permit modification, revocation and reissuance, termination, a notification of planned changes or anticipated noncompliance does not limit, diminish and/or stay compliance with any terms of this permit.

O. Definitions

Definitions of key terms are included in Appendix A of this permit.

P. Re-Opener Clause

- If there is evidence indicating potential or realized impacts on water quality due to any stormwater discharge associated with construction activity covered by this permit, the owner or operator of such discharge may be required to obtain an individual permit or alternative general permit in accordance with Part VII.K. of this permit or the permit may be modified to include different limitations and/or requirements.
- 2. Any Department initiated permit modification, suspension or revocation will be conducted in accordance with 6 NYCRR Part 621, 6 NYCRR 750-1.18, and 6 NYCRR 750-1.20.

Q. Penalties for Falsification of Forms and Reports

In accordance with 6NYCRR Part 750-2.4 and 750-2.5, any person who knowingly makes any false material statement, representation, or certification in any application, record, report or other document filed or required to be maintained under this permit, including reports of compliance or noncompliance shall, upon conviction, be punished in accordance with ECL §71-1933 and or Articles 175 and 210 of the New York State Penal Law.

R. Other Permits

Nothing in this permit relieves the *owner or operator* from a requirement to obtain any other permits required by law.

APPENDIX A – Acronyms and Definitions

Acronyms

APO – Agency Preservation Officer

BMP – Best Management Practice

CPESC – Certified Professional in Erosion and Sediment Control

Cpv – Channel Protection Volume

CWA – Clean Water Act (or the Federal Water Pollution Control Act, 33 U.S.C. §1251 et seq)

DOW – Division of Water

EAF – Environmental Assessment Form

ECL - Environmental Conservation Law

EPA – U. S. Environmental Protection Agency

HSG – Hydrologic Soil Group

MS4 – Municipal Separate Storm Sewer System

NOI – Notice of Intent

NOT – Notice of Termination

NPDES – National Pollutant Discharge Elimination System

OPRHP – Office of Parks, Recreation and Historic Places

Qf – Extreme Flood

Qp – Overbank Flood

RRv – Runoff Reduction Volume

RWE - Regional Water Engineer

SEQR – State Environmental Quality Review

SEQRA - State Environmental Quality Review Act

SHPA – State Historic Preservation Act

SPDES – State Pollutant Discharge Elimination System

SWPPP – Stormwater Pollution Prevention Plan

TMDL – Total Maximum Daily Load

UPA – Uniform Procedures Act

USDA – United States Department of Agriculture

WQv – Water Quality Volume

Definitions

<u>All definitions in this section are solely for the purposes of this permit.</u> **Agricultural Building –** a structure designed and constructed to house farm implements, hay, grain, poultry, livestock or other horticultural products; excluding any structure designed, constructed or used, in whole or in part, for human habitation, as a place of employment where agricultural products are processed, treated or packaged, or as a place used by the public.

Agricultural Property –means the land for construction of a barn, *agricultural building*, silo, stockyard, pen or other structural practices identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" prepared by the Department in cooperation with agencies of New York Nonpoint Source Coordinating Committee (dated June 2007).

Alter Hydrology from Pre to Post-Development Conditions - means the postdevelopment peak flow rate(s) has increased by more than 5% of the pre-developed condition for the design storm of interest (e.g. 10 yr and 100 yr).

Combined Sewer - means a sewer that is designed to collect and convey both "sewage" and "stormwater".

Commence (Commencement of) Construction Activities - means the initial disturbance of soils associated with clearing, grading or excavation activities; or other construction related activities that disturb or expose soils such as demolition, stockpiling of fill material, and the initial installation of erosion and sediment control practices required in the SWPPP. See definition for "*Construction Activity(ies)*" also.

Construction Activity(ies) - means any clearing, grading, excavation, filling, demolition or stockpiling activities that result in soil disturbance. Clearing activities can include, but are not limited to, logging equipment operation, the cutting and skidding of trees, stump removal and/or brush root removal. Construction activity does not include routine maintenance that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility.

Construction Site – means the land area where *construction activity(ies)* will occur. See definition for "*Commence (Commencement of) Construction Activities*" and "*Larger Common Plan of Development or Sale*" also.

Dewatering – means the act of draining rainwater and/or groundwater from building foundations, vaults or excavations/trenches.

Direct Discharge (to a specific surface waterbody) - means that runoff flows from a *construction site* by overland flow and the first point of discharge is the specific surface waterbody, or runoff flows from a *construction site* to a separate storm sewer system

and the first point of discharge from the separate storm sewer system is the specific surface waterbody.

Discharge(s) - means any addition of any pollutant to waters of the State through an outlet or *point source*.

Embankment – means an earthen or rock slope that supports a road/highway.

Endangered or Threatened Species – see 6 NYCRR Part 182 of the Department's rules and regulations for definition of terms and requirements.

Environmental Conservation Law (ECL) - means chapter 43-B of the Consolidated Laws of the State of New York, entitled the Environmental Conservation Law.

Equivalent (Equivalence) – means that the practice or measure meets all the performance, longevity, maintenance, and safety objectives of the technical standard and will provide an equal or greater degree of water quality protection.

Final Stabilization - means that all soil disturbance activities have ceased and a uniform, perennial vegetative cover with a density of eighty (80) percent over the entire pervious surface has been established; or other equivalent stabilization measures, such as permanent landscape mulches, rock rip-rap or washed/crushed stone have been applied on all disturbed areas that are not covered by permanent structures, concrete or pavement.

General SPDES permit - means a SPDES permit issued pursuant to 6 NYCRR Part 750-1.21 and Section 70-0117 of the ECL authorizing a category of discharges.

Groundwater(s) - means waters in the saturated zone. The saturated zone is a subsurface zone in which all the interstices are filled with water under pressure greater than that of the atmosphere. Although the zone may contain gas-filled interstices or interstices filled with fluids other than water, it is still considered saturated.

Historic Property – means any building, structure, site, object or district that is listed on the State or National Registers of Historic Places or is determined to be eligible for listing on the State or National Registers of Historic Places.

Impervious Area (Cover) - means all impermeable surfaces that cannot effectively infiltrate rainfall. This includes paved, concrete and gravel surfaces (i.e. parking lots, driveways, roads, runways and sidewalks); building rooftops and miscellaneous impermeable structures such as patios, pools, and sheds.

Infeasible – means not technologically possible, or not economically practicable and achievable in light of best industry practices.

Larger Common Plan of Development or Sale - means a contiguous area where multiple separate and distinct *construction activities* are occurring, or will occur, under one plan. The term "plan" in "larger common plan of development or sale" is broadly defined as any announcement or piece of documentation (including a sign, public notice or hearing, marketing plan, advertisement, drawing, permit application, State Environmental Quality Review Act (SEQRA) environmental assessment form or other documents, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating that *construction activities* may occur on a specific plot.

For discrete construction projects that are located within a larger common plan of development or sale that are at least 1/4 mile apart, each project can be treated as a separate plan of development or sale provided any interconnecting road, pipeline or utility project that is part of the same "common plan" is not concurrently being disturbed.

Minimize – means reduce and/or eliminate to the extent achievable using control measures (including best management practices) that are technologically available and economically practicable and achievable in light of best industry practices.

Municipal Separate Storm Sewer (MS4) - a conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains):

- (i) Owned or operated by a State, city, town, borough, county, parish, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or an Indian tribe or an authorized Indian tribal organization, or a designated and approved management agency under section 208 of the CWA that discharges to surface waters of the State;
- (ii) Designed or used for collecting or conveying stormwater;
- (iii) Which is not a combined sewer; and
- (iv) Which is not part of a Publicly Owned Treatment Works (POTW) as defined at 40 CFR 122.2.

National Pollutant Discharge Elimination System (NPDES) - means the national system for the issuance of wastewater and stormwater permits under the Federal Water Pollution Control Act (Clean Water Act).

Natural Buffer – means an undisturbed area with natural cover running along a surface water (e.g. wetland, stream, river, lake, etc.).

New Development – means any land disturbance that does not meet the definition of Redevelopment Activity included in this appendix.

New York State Erosion and Sediment Control Certificate Program – a certificate program that establishes and maintains a process to identify and recognize individuals who are capable of developing, designing, inspecting and maintaining erosion and sediment control plans on projects that disturb soils in New York State. The certificate program is administered by the New York State Conservation District Employees Association.

NOI Acknowledgment Letter - means the letter that the Department sends to an owner or operator to acknowledge the Department's receipt and acceptance of a complete Notice of Intent. This letter documents the owner's or operator's authorization to discharge in accordance with the general permit for stormwater discharges from *construction activity*.

Nonpoint Source - means any source of water pollution or pollutants which is not a discrete conveyance or *point source* permitted pursuant to Title 7 or 8 of Article 17 of the Environmental Conservation Law (see ECL Section 17-1403).

Overbank –means flow events that exceed the capacity of the stream channel and spill out into the adjacent floodplain.

Owner or Operator - means the person, persons or legal entity which owns or leases the property on which the *construction activity* is occurring; an entity that has operational control over the construction plans and specifications, including the ability to make modifications to the plans and specifications; and/or an entity that has day-to-day operational control of those activities at a project that are necessary to ensure compliance with the permit conditions.

Performance Criteria – means the design criteria listed under the "Required Elements" sections in Chapters 5, 6 and 10 of the technical standard, New York State Stormwater Management Design Manual, dated January 2015. It does not include the Sizing Criteria (i.e. WQv, RRv, Cpv, Qp and Qf) in Part I.C.2. of the permit.

Point Source - means any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, vessel or other floating craft, or landfill leachate collection system from which *pollutants* are or may be discharged.

Pollutant - means dredged spoil, filter backwash, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand and industrial, municipal, agricultural waste and ballast discharged into water; which may cause or might reasonably be expected to cause pollution of the waters of the state in contravention of the standards or guidance values adopted as provided in 6 NYCRR Parts 700 et seq.

Qualified Inspector - means a person that is knowledgeable in the principles and practices of erosion and sediment control, such as a licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder or other Department endorsed individual(s).

It can also mean someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided that person has training in the principles and practices of erosion and sediment control. Training in the principles and practices of erosion and sediment control means that the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect has received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed receiving the initial training, the individual working under the direct supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect supervision of the licensed Professional Engineer or Registered Landscape Architect shall receive four (4) hours of training every three (3) years.

It can also mean a person that meets the *Qualified Professional* qualifications in addition to the *Qualified Inspector* qualifications.

Note: Inspections of any post-construction stormwater management practices that include structural components, such as a dam for an impoundment, shall be performed by a licensed Professional Engineer.

Qualified Professional - means a person that is knowledgeable in the principles and practices of stormwater management and treatment, such as a licensed Professional Engineer, Registered Landscape Architect or other Department endorsed individual(s). Individuals preparing SWPPPs that require the post-construction stormwater management practice component must have an understanding of the principles of hydrology, water quality management practice design, water quantity control design, and, in many cases, the principles of hydraulics. All components of the SWPPP that involve the practice of engineering, as defined by the NYS Education Law (see Article 145), shall be prepared by, or under the direct supervision of, a professional engineer licensed to practice in the State of New York.

Redevelopment Activity(ies) – means the disturbance and reconstruction of existing impervious area, including impervious areas that were removed from a project site within five (5) years of preliminary project plan submission to the local government (i.e. site plan, subdivision, etc.).

Regulated, Traditional Land Use Control MS4 - means a city, town or village with land use control authority that is authorized to discharge under New York State DEC's

SPDES General Permit For Stormwater Discharges from Municipal Separate Stormwater Sewer Systems (MS4s) or the City of New York's Individual SPDES Permit for their Municipal Separate Storm Sewer Systems (NY-0287890).

Routine Maintenance Activity - means *construction activity* that is performed to maintain the original line and grade, hydraulic capacity, or original purpose of a facility, including, but not limited to:

- Re-grading of gravel roads or parking lots,
- Cleaning and shaping of existing roadside ditches and culverts that maintains the approximate original line and grade, and hydraulic capacity of the ditch,
- Cleaning and shaping of existing roadside ditches that does not maintain the approximate original grade, hydraulic capacity and purpose of the ditch if the changes to the line and grade, hydraulic capacity or purpose of the ditch are installed to improve water quality and quantity controls (e.g. installing grass lined ditch),
- Placement of aggregate shoulder backing that stabilizes the transition between the road shoulder and the ditch or *embankment*,
- Full depth milling and filling of existing asphalt pavements, replacement of concrete pavement slabs, and similar work that does not expose soil or disturb the bottom six (6) inches of subbase material,
- Long-term use of equipment storage areas at or near highway maintenance facilities,
- Removal of sediment from the edge of the highway to restore a previously existing sheet-flow drainage connection from the highway surface to the highway ditch or *embankment*,
- Existing use of Canal Corp owned upland disposal sites for the canal, and
- Replacement of curbs, gutters, sidewalks and guide rail posts.

Site limitations – means site conditions that prevent the use of an infiltration technique and or infiltration of the total WQv. Typical site limitations include: seasonal high groundwater, shallow depth to bedrock, and soils with an infiltration rate less than 0.5 inches/hour. The existence of site limitations shall be confirmed and documented using actual field testing (i.e. test pits, soil borings, and infiltration test) or using information from the most current United States Department of Agriculture (USDA) Soil Survey for the County where the project is located.

Sizing Criteria – means the criteria included in Part I.C.2 of the permit that are used to size post-construction stormwater management control practices. The criteria include; Water Quality Volume (WQv), Runoff Reduction Volume (RRv), Channel Protection Volume (Cpv), *Overbank* Flood (Qp), and Extreme Flood (Qf).

State Pollutant Discharge Elimination System (SPDES) - means the system established pursuant to Article 17 of the ECL and 6 NYCRR Part 750 for issuance of permits authorizing discharges to the waters of the state.

Steep Slope – means land area designated on the current United States Department of Agriculture ("USDA") Soil Survey as Soil Slope Phase "D", (provided the map unit name is inclusive of slopes greater than 25%), or Soil Slope Phase E or F, (regardless of the map unit name), or a combination of the three designations.

Streambank – as used in this permit, means the terrain alongside the bed of a creek or stream. The bank consists of the sides of the channel, between which the flow is confined.

Stormwater Pollution Prevention Plan (SWPPP) – means a project specific report, including construction drawings, that among other things: describes the construction activity(ies), identifies the potential sources of pollution at the *construction site*; describes and shows the stormwater controls that will be used to control the pollutants (i.e. erosion and sediment controls; for many projects, includes post-construction stormwater management controls); and identifies procedures the *owner or operator* will implement to comply with the terms and conditions of the permit. See Part III of the permit for a complete description of the information that must be included in the SWPPP.

Surface Waters of the State - shall be construed to include lakes, bays, sounds, ponds, impounding reservoirs, springs, rivers, streams, creeks, estuaries, marshes, inlets, canals, the Atlantic ocean within the territorial seas of the state of New York and all other bodies of surface water, natural or artificial, inland or coastal, fresh or salt, public or private (except those private waters that do not combine or effect a junction with natural surface waters), which are wholly or partially within or bordering the state or within its jurisdiction. Waters of the state are further defined in 6 NYCRR Parts 800 to 941.

Temporarily Ceased – means that an existing disturbed area will not be disturbed again within 14 calendar days of the previous soil disturbance.

Temporary Stabilization - means that exposed soil has been covered with material(s) as set forth in the technical standard, New York Standards and Specifications for Erosion and Sediment Control, to prevent the exposed soil from eroding. The materials can include, but are not limited to, mulch, seed and mulch, and erosion control mats (e.g. jute twisted yarn, excelsior wood fiber mats).

Total Maximum Daily Loads (TMDLs) - A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and *nonpoint sources*. It is a calculation of the maximum amount of a pollutant that a waterbody can receive on a daily basis and still meet *water quality standards*, and an allocation of that amount to the pollutant's sources. A TMDL stipulates wasteload allocations (WLAs) for *point source* discharges, load allocations (LAs) for *nonpoint sources*, and a margin of safety (MOS).

Trained Contractor - means an employee from the contracting (construction) company, identified in Part III.A.6., that has received four (4) hours of Department endorsed

Appendix A

training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity. After receiving the initial training, the *trained contractor* shall receive four (4) hours of training every three (3) years.

It can also mean an employee from the contracting (construction) company, identified in Part III.A.6., that meets the *qualified inspector* qualifications (e.g. licensed Professional Engineer, Certified Professional in Erosion and Sediment Control (CPESC), Registered Landscape Architect, New York State Erosion and Sediment Control Certificate Program holder, or someone working under the direct supervision of, and at the same company as, the licensed Professional Engineer or Registered Landscape Architect, provided they have received four (4) hours of Department endorsed training in proper erosion and sediment control principles from a Soil and Water Conservation District, or other Department endorsed entity).

The *trained contractor* is responsible for the day to day implementation of the SWPPP.

Uniform Procedures Act (UPA) Permit - means a permit required under 6 NYCRR Part 621 of the Environmental Conservation Law (ECL), Article 70.

Water Quality Standard - means such measures of purity or quality for any waters in relation to their reasonable and necessary use as promulgated in 6 NYCRR Part 700 et seq.

APPENDIX B – Required SWPPP Components by Project Type

Table 1

Construction Activities that Require the Preparation of a SWPPP That Only Includes Erosion and Sediment Controls

The following construction activities that involve soil disturbances of one (1) or more acres of land, but less than five (5) acres: • Single family home not located in one of the watersheds listed in Appendix C or not *directly* discharging to one of the 303(d) segments listed in Appendix E Single family residential subdivisions with 25% or less impervious cover at total site build-out and not located in one of the watersheds listed in Appendix C and not directly discharging to one of the 303(d) segments listed in Appendix E • Construction of a barn or other agricultural building, silo, stock yard or pen. The following construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land: All construction activities located in the watersheds identified in Appendix D that involve soil disturbances between five thousand (5,000) square feet and one (1) acre of land. The following construction activities that involve soil disturbances of one (1) or more acres of land: Installation of underground, linear utilities; such as gas lines, fiber-optic cable, cable TV, electric, telephone, sewer mains, and water mains · Environmental enhancement projects, such as wetland mitigation projects, stormwater retrofits and stream restoration projects Pond construction • Linear bike paths running through areas with vegetative cover, including bike paths surfaced with an impervious cover · Cross-country ski trails and walking/hiking trails Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are not part of residential, commercial or institutional development; • Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that include incidental shoulder or curb work along an existing highway to support construction of the sidewalk,

- bike path or walking path.Slope stabilization projects
- Slope flattening that changes the grade of the site, but does not significantly change the runoff characteristics

Appendix B

Table 1 (Continued) CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP

THAT ONLY INCLUDES EROSION AND SEDIMENT CONTROLS

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Spoil areas that will be covered with vegetation
- Vegetated open space projects (i.e. recreational parks, lawns, meadows, fields, downhill ski trails) excluding projects that *alter hydrology from pre to post development* conditions,
- Athletic fields (natural grass) that do not include the construction or reconstruction of *impervious* area and do not alter hydrology from pre to post development conditions
- · Demolition project where vegetation will be established, and no redevelopment is planned
- Overhead electric transmission line project that does not include the construction of permanent access roads or parking areas surfaced with *impervious cover*
- Structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State", excluding projects that involve soil disturbances of greater than five acres and construction activities that include the construction or reconstruction of impervious area
- Temporary access roads, median crossovers, detour roads, lanes, or other temporary impervious areas that will be restored to pre-construction conditions once the construction activity is complete

Table 2

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

- Single family home located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family home that disturbs five (5) or more acres of land
- Single family residential subdivisions located in one of the watersheds listed in Appendix C or *directly discharging* to one of the 303(d) segments listed in Appendix E
- Single family residential subdivisions that involve soil disturbances of between one (1) and five (5) acres of land with greater than 25% impervious cover at total site build-out
- Single family residential subdivisions that involve soil disturbances of five (5) or more acres of land, and single family residential subdivisions that involve soil disturbances of less than five (5) acres that are part of a larger common plan of development or sale that will ultimately disturb five or more acres of land
- Multi-family residential developments; includes duplexes, townhomes, condominiums, senior housing complexes, apartment complexes, and mobile home parks
- Airports
- Amusement parks
- · Breweries, cideries, and wineries, including establishments constructed on agricultural land
- Campgrounds
- Cemeteries that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Commercial developments
- Churches and other places of worship
- Construction of a barn or other *agricultural building* (e.g. silo) and structural practices as identified in Table II in the "Agricultural Management Practices Catalog for Nonpoint Source Pollution in New York State" that include the construction or reconstruction of *impervious area*, excluding projects that involve soil disturbances of less than five acres.
- Golf courses
- Institutional development; includes hospitals, prisons, schools and colleges
- Industrial facilities; includes industrial parks
- Landfills
- Municipal facilities; includes highway garages, transfer stations, office buildings, POTW's, water treatment plants, and water storage tanks
- Office complexes
- · Playgrounds that include the construction or reconstruction of impervious area
- Sports complexes
- · Racetracks; includes racetracks with earthen (dirt) surface
- Road construction or reconstruction, including roads constructed as part of the construction activities listed in Table 1

Table 2 (Continued)

CONSTRUCTION ACTIVITIES THAT REQUIRE THE PREPARATION OF A SWPPP THAT INCLUDES POST-CONSTRUCTION STORMWATER MANAGEMENT PRACTICES

The following construction activities that involve soil disturbances of one (1) or more acres of land:

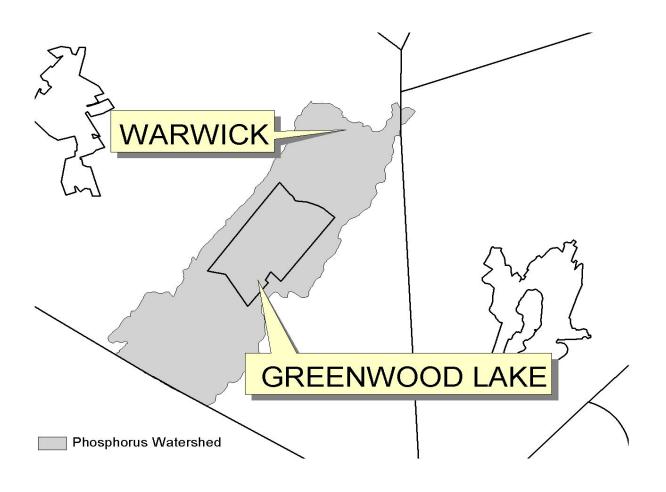
- Parking lot construction or reconstruction, including parking lots constructed as part of the construction activities listed in Table 1
- Athletic fields (natural grass) that include the construction or reconstruction of impervious area (>5% of disturbed area) or *alter the hydrology from pre to post development* conditions
- Athletic fields with artificial turf
- Permanent access roads, parking areas, substations, compressor stations and well drilling pads, surfaced with *impervious cover*, and constructed as part of an over-head electric transmission line project, wind-power project, cell tower project, oil or gas well drilling project, sewer or water main project or other linear utility project
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a residential, commercial or institutional development
- Sidewalk, bike path or walking path projects, surfaced with an impervious cover, that are part of a highway construction or reconstruction project
- All other construction activities that include the construction or reconstruction of *impervious area* or *alter the hydrology from pre to post development* conditions, and are not listed in Table 1

APPENDIX C – Watersheds Requiring Enhanced Phosphorus Removal

Watersheds where *owners or operators* of construction activities identified in Table 2 of Appendix B must prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the Enhanced Phosphorus Removal Standards included in the technical standard, New York State Stormwater Management Design Manual ("Design Manual").

- Entire New York City Watershed located east of the Hudson River Figure 1
- Onondaga Lake Watershed Figure 2
- Greenwood Lake Watershed -Figure 3
- Oscawana Lake Watershed Figure 4
- Kinderhook Lake Watershed Figure 5

Figure 1 - New York City Watershed East of the Hudson



Appendix C

Figure 3 - Greenwood Lake Watershed

Figure 4 - Oscawana Lake Watershed

Figure 5 - Kinderhook Lake Watershed

APPENDIX D – Watersheds with Lower Disturbance Threshold

Watersheds where *owners or operators* of construction activities that involve soil disturbances between five thousand (5000) square feet and one (1) acre of land must obtain coverage under this permit.

Entire New York City Watershed that is located east of the Hudson River - See Figure 1 in Appendix C

APPENDIX E – 303(d) Segments Impaired by Construction Related Pollutant(s)

List of 303(d) segments impaired by pollutants related to *construction activity* (e.g. silt, sediment or nutrients). The list was developed using "The Final New York State 2016 Section 303(d) List of Impaired Waters Requiring a TMDL/Other Strategy" dated November 2016. *Owners or operators* of single family home and single family residential subdivisions with 25% or less total impervious cover at total site build-out that involve soil disturbances of one or more acres of land, but less than 5 acres, and *directly discharge* to one of the listed segments below shall prepare a SWPPP that includes post-construction stormwater management practices designed in conformance with the New York State Stormwater Management Design Manual ("Design Manual"), dated January 2015.

COUNTY	WATERBODY	POLLUTANT	
Albany	Ann Lee (Shakers) Pond, Stump Pond	Nutrients	
Albany	Basic Creek Reservoir	Nutrients	
Allegany	Amity Lake, Saunders Pond	Nutrients	
Bronx	Long Island Sound, Bronx	Nutrients	
Bronx	Van Cortlandt Lake	Nutrients	
Broome	Fly Pond, Deer Lake, Sky Lake	Nutrients	
Broome	Minor Tribs to Lower Susquehanna (north)	Nutrients	
Broome	Whitney Point Lake/Reservoir	Nutrients	
Cattaraugus	Allegheny River/Reservoir	Nutrients	
Cattaraugus	Beaver (Alma) Lake	Nutrients	
Cattaraugus	Case Lake	Nutrients	
Cattaraugus	Linlyco/Club Pond	Nutrients	
Cayuga	Duck Lake	Nutrients	
Cayuga	Little Sodus Bay	Nutrients	
Chautauqua	Bear Lake	Nutrients	
Chautauqua	Chadakoin River and tribs	Nutrients	
Chautauqua	Chautauqua Lake, North	Nutrients	
Chautauqua	Chautauqua Lake, South	Nutrients	
Chautauqua	Findley Lake	Nutrients	
Chautauqua	Hulburt/Clymer Pond	Nutrients	
Clinton	Great Chazy River, Lower, Main Stem	Silt/Sediment	
Clinton	Lake Champlain, Main Lake, Middle	Nutrients	
Clinton	Lake Champlain, Main Lake, North	Nutrients	
Columbia	Kinderhook Lake	Nutrients	
Columbia	Robinson Pond Nutrients		
Cortland	ortland Dean Pond		

Dutchess	Fall Kill and tribs	Nutrients
Dutchess	Hillside Lake	Nutrients
Dutchess	Wappingers Lake	Nutrients
Dutchess	Wappingers Lake	Silt/Sediment
Erie	Beeman Creek and tribs	Nutrients
Erie	Ellicott Creek, Lower, and tribs	Silt/Sediment
Erie	Ellicott Creek, Lower, and tribs	Nutrients
Erie	Green Lake	Nutrients
Erie	Little Sister Creek, Lower, and tribs	Nutrients
Erie	Murder Creek, Lower, and tribs	Nutrients
Erie	Rush Creek and tribs	Nutrients
Erie	Scajaquada Creek, Lower, and tribs	Nutrients
Erie	Scajaquada Creek, Middle, and tribs	Nutrients
Erie	Scajaquada Creek, Upper, and tribs	Nutrients
Erie	South Branch Smoke Cr, Lower, and tribs	Silt/Sediment
Erie	South Branch Smoke Cr, Lower, and tribs	Nutrients
Essex	Lake Champlain, Main Lake, South	Nutrients
Essex	Lake Champlain, South Lake	Nutrients
Essex	Willsboro Bay	Nutrients
Genesee	Bigelow Creek and tribs	Nutrients
Genesee	Black Creek, Middle, and minor tribs	Nutrients
Genesee	Black Creek, Upper, and minor tribs	Nutrients
Genesee	Bowen Brook and tribs	Nutrients
Genesee	LeRoy Reservoir	Nutrients
Genesee	Oak Orchard Cr, Upper, and tribs	Nutrients
Genesee	Tonawanda Creek, Middle, Main Stem	Nutrients
Greene	Schoharie Reservoir	Silt/Sediment
Greene	Sleepy Hollow Lake	Silt/Sediment
Herkimer	Steele Creek tribs	Silt/Sediment
Herkimer	Steele Creek tribs	Nutrients
Jefferson	Moon Lake	Nutrients
Kings	Hendrix Creek	Nutrients
Kings	Prospect Park Lake	Nutrients
Lewis	Mill Creek/South Branch, and tribs	Nutrients
Livingston	Christie Creek and tribs Nutrients	
Livingston	Conesus Lake	Nutrients
Livingston	Mill Creek and minor tribs	Silt/Sediment
Monroe	Black Creek, Lower, and minor tribs Nutrients	
Monroe	Buck Pond Nutrients	
Monroe	Cranberry Pond Nutrients	

Monroe	Lake Ontario Shoreline, Western	Nutrients
Monroe	Long Pond	Nutrients
Monroe	Mill Creek and tribs	Nutrients
Monroe	Mill Creek/Blue Pond Outlet and tribs	Nutrients
Monroe	Minor Tribs to Irondequoit Bay	Nutrients
Monroe	Rochester Embayment - East	Nutrients
Monroe	Rochester Embayment - West	Nutrients
Monroe	Shipbuilders Creek and tribs	Nutrients
Monroe	Thomas Creek/White Brook and tribs	Nutrients
Nassau	Beaver Lake	Nutrients
Nassau	Camaans Pond	Nutrients
Nassau	East Meadow Brook, Upper, and tribs	Silt/Sediment
Nassau	East Rockaway Channel	Nutrients
Nassau	Grant Park Pond	Nutrients
Nassau	Hempstead Bay	Nutrients
Nassau	Hempstead Lake	Nutrients
Nassau	Hewlett Bay	Nutrients
Nassau	Hog Island Channel	Nutrients
Nassau	Long Island Sound, Nassau County Waters	Nutrients
Nassau	Massapequa Creek and tribs	Nutrients
Nassau	Milburn/Parsonage Creeks, Upp, and tribs	Nutrients
Nassau	Reynolds Channel, west	Nutrients
Nassau	Tidal Tribs to Hempstead Bay	Nutrients
Nassau	Tribs (fresh) to East Bay	Nutrients
Nassau	Tribs (fresh) to East Bay	Silt/Sediment
Nassau	Tribs to Smith/Halls Ponds	Nutrients
Nassau	Woodmere Channel	Nutrients
New York	Harlem Meer	Nutrients
New York	The Lake in Central Park	Nutrients
Niagara	Bergholtz Creek and tribs	Nutrients
Niagara	Hyde Park Lake	Nutrients
Niagara	Lake Ontario Shoreline, Western	Nutrients
Niagara	Lake Ontario Shoreline, Western	Nutrients
Oneida	Ballou, Nail Creeks and tribs Nutrient	
Onondaga	Harbor Brook, Lower, and tribs Nutrients	
Onondaga	Ley Creek and tribs	Nutrients
Onondaga	Minor Tribs to Onondaga Lake	Nutrients
Onondaga	Ninemile Creek, Lower, and tribs Nutrients	
Onondaga	Onondaga Creek, Lower, and tribs Nutrients	
Onondaga	Onondaga Creek, Middle, and tribs Nutrients	

Onondaga	Onondaga Lake, northern end	Nutrients
Onondaga	Onondaga Lake, southern end	Nutrients
Ontario	Great Brook and minor tribs	Silt/Sediment
Ontario	Great Brook and minor tribs	Nutrients
Ontario	Hemlock Lake Outlet and minor tribs	Nutrients
Ontario	Honeoye Lake	Nutrients
Orange	Greenwood Lake	Nutrients
Orange	Monhagen Brook and tribs	Nutrients
Orange	Orange Lake	Nutrients
Orleans	Lake Ontario Shoreline, Western	Nutrients
Orleans	Lake Ontario Shoreline, Western	Nutrients
Oswego	Lake Neatahwanta	Nutrients
Oswego	Pleasant Lake	Nutrients
Putnam	Bog Brook Reservoir	Nutrients
Putnam	Boyd Corners Reservoir	Nutrients
Putnam	Croton Falls Reservoir	Nutrients
Putnam	Diverting Reservoir	Nutrients
Putnam	East Branch Reservoir	Nutrients
Putnam	Lake Carmel	Nutrients
Putnam	Middle Branch Reservoir	Nutrients
Putnam	Oscawana Lake	Nutrients
Putnam	Palmer Lake	Nutrients
Putnam	West Branch Reservoir	Nutrients
Queens	Bergen Basin	Nutrients
Queens	Flushing Creek/Bay Nutrie	
Queens	Jamaica Bay, Eastern, and tribs (Queens)	Nutrients
Queens	Kissena Lake	Nutrients
Queens	Meadow Lake	Nutrients
Queens	Willow Lake	Nutrients
Rensselaer	Nassau Lake	Nutrients
Rensselaer	Snyders Lake	Nutrients
Richmond	Grasmere Lake/Bradys Pond	Nutrients
Rockland	Congers Lake, Swartout Lake	Nutrients
Rockland	Rockland Lake	Nutrients
Saratoga	Ballston Lake Nutrients	
Saratoga	Dwaas Kill and tribs Silt/Sedime	
Saratoga	Dwaas Kill and tribs Nutrients	
Saratoga	Lake Lonely Nutrients	
Saratoga		
Saratoga		

Schenectady	Collins Lake	Nutrients
Schenectady	Duane Lake	Nutrients
Schenectady	Mariaville Lake	Nutrients
Schoharie	Engleville Pond	Nutrients
Schoharie	Summit Lake	Nutrients
Seneca	Reeder Creek and tribs	Nutrients
St.Lawrence	Black Lake Outlet/Black Lake	Nutrients
St.Lawrence	Fish Creek and minor tribs	Nutrients
Steuben	Smith Pond	Nutrients
Suffolk	Agawam Lake	Nutrients
Suffolk	Big/Little Fresh Ponds	Nutrients
Suffolk	Canaan Lake	Silt/Sediment
Suffolk	Canaan Lake	Nutrients
Suffolk	Flanders Bay, West/Lower Sawmill Creek	Nutrients
Suffolk	Fresh Pond	Nutrients
Suffolk	Great South Bay, East	Nutrients
Suffolk	Great South Bay, Middle	Nutrients
Suffolk	Great South Bay, West	Nutrients
Suffolk	Lake Ronkonkoma	Nutrients
Suffolk	Long Island Sound, Suffolk County, West	Nutrients
Suffolk	Mattituck (Marratooka) Pond	Nutrients
Suffolk	Meetinghouse/Terrys Creeks and tribs	Nutrients
Suffolk	Mill and Seven Ponds	Nutrients
Suffolk	Millers Pond	Nutrients
Suffolk	Moriches Bay, East	Nutrients
Suffolk	Moriches Bay, West	Nutrients
Suffolk	Peconic River, Lower, and tidal tribs	Nutrients
Suffolk	Quantuck Bay	Nutrients
Suffolk	Shinnecock Bay and Inlet	Nutrients
Suffolk	Tidal tribs to West Moriches Bay	Nutrients
Sullivan	Bodine, Montgomery Lakes	Nutrients
Sullivan	Davies Lake	Nutrients
Sullivan	Evens Lake	Nutrients
Sullivan	Pleasure Lake Nutrients	
Tompkins	Cayuga Lake, Southern End Nutrients	
Tompkins	Cayuga Lake, Southern End Silt/Sediment	
Tompkins	Owasco Inlet, Upper, and tribs Nutrients	
Ulster	Ashokan Reservoir Silt/Sediment	
Ulster	Esopus Creek, Upper, and minor tribs Silt/Sediment	
Warren	Hague Brook and tribs Silt/Sediment	

Warren	Huddle/Finkle Brooks and tribs	Silt/Sediment
Warren	Indian Brook and tribs	Silt/Sediment
Warren	Lake George	Silt/Sediment
Warren	Tribs to L.George, Village of L George	Silt/Sediment
Washington	Cossayuna Lake	Nutrients
Washington	Lake Champlain, South Bay	Nutrients
Washington	Tribs to L.George, East Shore	Silt/Sediment
Washington	Wood Cr/Champlain Canal and minor tribs	Nutrients
Wayne	Port Bay	Nutrients
Westchester	Amawalk Reservoir	Nutrients
Westchester	Blind Brook, Upper, and tribs	Silt/Sediment
Westchester	Cross River Reservoir	Nutrients
Westchester	Lake Katonah	Nutrients
Westchester	Lake Lincolndale	Nutrients
Westchester	Lake Meahagh	Nutrients
Westchester	Lake Mohegan	Nutrients
Westchester	Lake Shenorock	Nutrients
Westchester	Long Island Sound, Westchester (East)	Nutrients
Westchester	Mamaroneck River, Lower	Silt/Sediment
Westchester	Mamaroneck River, Upper, and minor tribs	Silt/Sediment
Westchester	Muscoot/Upper New Croton Reservoir	Nutrients
Westchester	New Croton Reservoir	Nutrients
Westchester	Peach Lake	Nutrients
Westchester	Reservoir No.1 (Lake Isle)	Nutrients
Westchester	Saw Mill River, Lower, and tribs	Nutrients
Westchester	Saw Mill River, Middle, and tribs	Nutrients
Westchester	Sheldrake River and tribs	Silt/Sediment
Westchester	Sheldrake River and tribs	Nutrients
Westchester	Silver Lake	Nutrients
Westchester	Teatown Lake	Nutrients
Westchester	Titicus Reservoir	Nutrients
Westchester	Truesdale Lake Nutrients	
Westchester	Wallace Pond Nutrients	
Wyoming	Java Lake Nutrients	
Wyoming	ing Silver Lake Nutrients	

<u>Region</u>	<u>Covering the</u> <u>FOLLOWING COUNTIES:</u>	DIVISION OF ENVIRONMENTAL PERMITS (DEP) <u>PERMIT ADMINISTRATORS</u>	DIVISION OF WATER (DOW) <u>Water (SPDES) Program</u>
1	NASSAU AND SUFFOLK	50 Circle Road Stony Brook, Ny 11790 Tel. (631) 444-0365	50 CIRCLE ROAD Stony Brook, Ny 11790-3409 Tel. (631) 444-0405
2	BRONX, KINGS, NEW YORK, QUEENS AND RICHMOND	1 Hunters Point Plaza, 47-40 21st St. Long Island City, Ny 11101-5407 Tel. (718) 482-4997	1 Hunters Point Plaza, 47-40 21st St. Long Island City, Ny 11101-5407 Tel. (718) 482-4933
3	DUTCHESS, ORANGE, PUTNAM, Rockland, Sullivan, Ulster and Westchester	21 South Putt Corners Road New Paltz, Ny 12561-1696 Tel. (845) 256-3059	100 HILLSIDE AVENUE, SUITE 1W WHITE PLAINS, NY 10603 TEL. (914) 428 - 2505
4	ALBANY, COLUMBIA, DELAWARE, GREENE, MONTGOMERY, OTSEGO, RENSSELAER, SCHENECTADY AND SCHOHARIE	1150 North Westcott Road Schenectady, Ny 12306-2014 Tel. (518) 357-2069	1130 North Westcott Road Schenectady, Ny 12306-2014 Tel. (518) 357-2045
5	CLINTON, ESSEX, FRANKLIN, Fulton, Hamilton, Saratoga, Warren and Washington	1115 State Route 86, Ро Вох 296 Ray Brook, Ny 12977-0296 Tel. (518) 897-1234	232 GOLF COURSE ROAD WARRENSBURG, NY 12885-1172 TEL. (518) 623-1200
6	HERKIMER, JEFFERSON, LEWIS, ONEIDA AND ST. LAWRENCE	STATE OFFICE BUILDING 317 WASHINGTON STREET WATERTOWN, NY 13601-3787 TEL. (315) 785-2245	STATE OFFICE BUILDING 207 GENESEE STREET UTICA, NY 13501-2885 TEL. (315) 793-2554
7	BROOME, CAYUGA, CHENANGO, CORTLAND, MADISON, ONONDAGA, OSWEGO, TIOGA AND TOMPKINS	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7438	615 ERIE BLVD. WEST SYRACUSE, NY 13204-2400 TEL. (315) 426-7500
8	CHEMUNG, GENESEE, LIVINGSTON, MONROE, ONTARIO, ORLEANS, SCHUYLER, SENECA, STEUBEN, WAYNE AND YATES	6274 EAST AVON-LIMA ROADAVON, NY 14414-9519 TEL. (585) 226-2466	6274 EAST AVON-LIMA RD. AVON, NY 14414-9519 TEL. (585) 226-2466
9	ALLEGANY, CATTARAUGUS, CHAUTAUQUA, ERIE, NIAGARA AND WYOMING	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7165	270 MICHIGAN AVENUE BUFFALO, NY 14203-2999 TEL. (716) 851-7070

APPENDIX F – List of NYS DEC Regional Offices